


Deep	Learning	in	Python	Prerequisites
	

Master	Data	Science	and	Machine	Learning	with	
Linear	Regression	and	Logistic	Regression	in	Python

	

By:	The	LazyProgrammer	(http://lazyprogrammer.me)

	

http://lazyprogrammer.me


Introduction

Chapter	1:	What	is	Machine	Learning?

Chapter	2:	Classification	and	Regression

Chapter	3:	Linear	Regression

Chapter	4:	Linear	Classification

Chapter	5:	Logistic	Regression

Chapter	6:	Maximum	Likelihood	Estimation

Chapter	7:	Gradient	Descent

Chapter	8:	The	XOR	and	Donut	Problems

Conclusion
	





Introduction
	

So	you	want	to	learn	about	deep	learning	and	neural	networks,	but	you	don’t	have	a	clue
what	machine	learning	even	is.	This	book	is	for	you.

	

Perhaps	you’ve	already	tried	to	read	some	tutorials	about	deep	learning,	and	were	just	left
scratching	your	head	because	you	did	not	understand	any	of	it.	This	book	is	for	you.

	

Believe	 the	 hype.	 Deep	 learning	 is	 making	 waves.	 At	 the	 time	 of	 this	 writing	 (March
2016),	Google’s	AlghaGo	program	just	beat	9-dan	professional	Go	player	Lee	Sedol	at	the
game	of	Go,	a	Chinese	board	game.

	

Experts	 in	 the	 field	 of	 Artificial	 Intelligence	 thought	 we	 were	 10	 years	 away	 from
achieving	 a	 victory	 against	 a	 top	 professional	 Go	 player,	 but	 progress	 seems	 to	 have
accelerated!

	

While	deep	 learning	 is	 a	 complex	 subject,	 it	 is	 not	 any	more	difficult	 to	 learn	 than	 any
other	machine	learning	algorithm.	I	wrote	this	book	to	introduce	you	to	the	prerequisites
of	neural	networks,	so	that	 learning	about	neural	networks	in	the	future	will	seem	like	a
natural	extension	of	 these	 topics.	You	will	get	along	 fine	with	undergraduate-level	math
and	programming	skill.

	

All	 the	materials	 in	 this	book	can	be	downloaded	and	installed	for	free.	We	will	use	 the
Python	programming	language,	along	with	the	numerical	computing	library	Numpy.

	

Unlike	other	machine	learning	algorithms,	deep	learning	is	particularly	powerful	because
it	automatically	learns	features.	That	means	you	don’t	need	to	spend	your	time	trying	to
come	up	with	and	test	“kernels”	or	“interaction	effects”	-	something	only	statisticians	love
to	do.	 Instead,	we	will	 eventually	 let	 the	neural	network	 learn	 these	 things	 for	us.	Each
layer	of	the	neural	network	is	made	up	of	logistic	regression	units.

	

Do	you	want	a	gentle	introduction	to	this	“dark	art”,	with	practical	code	examples	that	you
can	try	right	away	and	apply	to	your	own	data?	Then	this	book	is	for	you.

	

This	book	was	designed	to	contain	all	the	prerequisite	information	you	need	for	my	next
book,	Deep	Learning	in	Python:	Master	Data	Science	and	Machine	Learning	with	Modern
Neural	Networks	written	in	Python,	Theano,	and	TensorFlow.

http://www.amazon.com/gp/product/B01CVJ19E8


	

There	are	many	techniques	 that	you	should	be	comfortable	with	before	diving	 into	deep
learning.	For	example,	the	“backpropagation”	algorithm	is	just	gradient	descent,	which	is
the	same	technique	that	is	used	to	solve	logistic	regression.

	

The	error	functions	and	output	functions	of	a	neural	network	are	exactly	the	same	as	those
used	in	linear	regression	and	logistic	regression.	The	training	process	is	nearly	identical.
Thus,	learning	about	linear	regression	and	logistic	regression	before	you	embark	on	your
deep	learning	journey	will	make	things	much,	much	simpler	for	you.
	

	





Chapter	1:	What	is	Machine	Learning?
	

Computer	programs	typically	follow	very	deterministic	processes.

	

IF	THIS

THEN	THAT

	

This	is	desired	behavior	for	most	programs.	You	wouldn’t	want	a	human	doing	arithmetic
for	you,	or	your	operating	system	to	make	“human	errors”	when	you’re	trying	to	get	your
work	done.

	

One	 very	 useful	 application	 of	 computer	 programs	 is	modeling	 or	 simulation.	 You	 can
write	 physics	 simulations	 and	models	 and	use	 them	 in	video	games	 to	produce	 realistic
graphics	 and	motion.	We	 can	 do	 simulations	 using	 the	 equations	 of	 fluid	mechanics	 to
determine	 how	 an	 airplane	 with	 a	 new	 design	 would	 move	 through	 the	 air,	 without
actually	building	it.

	

This	leads	us	to	an	interesting	question:	Can	we	model	the	brain?

	

The	brain	is	a	complex	object	but	we	have	decades	of	research	that	tells	us	how	it	works.
The	brain	is	made	up	of	neurons	that	send	electrical	and	chemical	signals	to	each	other.

	

We	 can	 certainly	 do	 electrical	 circuit	 simulations.	 We	 can	 do	 simulations	 of	 chemical
reactions.	 We	 have	 circuit	 models	 of	 the	 neuron	 that	 simulate	 its	 behavior	 pretty
accurately.	So	why	can’t	we	just	hook	these	up	and	make	a	brain?

	

Realize	 that	 there	 is	 a	 heavy	 assumption	 here	 -	 that	 there	 is	 no	 “soul”,	 and	 that	 your
consciousness	is	merely	the	product	of	very	specifically	organized	biological	circuits.

	

Whether	or	not	that	is	true	remains	to	be	seen.

	

This	is	a	very	high-level	view	that	kind	of	disappears	when	you	study	machine	learning.
The	 study	 of	 machine	 learning	 involves	 lots	 of	 math	 and	 optimization	 (finding	 the
minimum	or	maximum	of	a	function).

	



Another	way	to	think	of	machine	learning	is	it’s	“pattern	recognition”.

	

In	human	terms	you	would	think	of	this	as	“learning	by	example”.

	

You	 learn	 that	1	+	1	=	2.	2	+	2	=	4.	1	+	2	=	3.	And	so	on.	You	begin	 to	 figure	out	 the
pattern	and	then	you	learn	to	“generalize”	that	pattern	to	new	problems.

	

You	don’t	need	to	re-learn	how	to	add	1000	+	1000,	you	just	know	how	to	add.

	

This	is	what	machine	learning	tries	to	achieve.

	

In	less	abstract	terms,	machine	learning	very	often	works	as	follows:

	

You	have	a	set	of	training	samples:

	

X	=	{	x1,	x2,	…,	xN	}

Y	=	{	y1,	y2,	…,	yN	}

	

We	call	X	the	“inputs”	and	Y	the	“outputs”.	Sometimes	we	call	Y	the	“target”	or	“labels”
and	name	it	T	instead	of	Y.

	

These	come	in	pairs,	so	y1	is	the	output	when	the	input	is	x1,	and	so	on.

	

We	hope	that,	given	enough	examples	of	x’s	and	y’s,	our	machine	learning	algorithm	will
learn	the	pattern.

	

Then,	when	we	later	input	a	new	xNEW	into	our	model,	we	hope	that	the	yNEW	that	it	outputs
is	accurate.

	

Note	that	there	are	other	types	of	learning,	but	what	I	described	above,	where	we	are	given
X	and	try	to	make	it	so	that	we	can	predict	Y	accurately,	is	called	“supervised	learning”.

	

There	is	a	type	of	machine	learning	called	“unsupervised	learning”	where	we	try	to	learn



the	distribution	of	the	data	(we	are	just	given	X).	Clustering	algorithms	are	an	example	of
unsupervised	 learning.	 Principal	 components	 analysis	 is	 another	 example.	 While	 deep
learning	and	neural	networks	can	be	used	to	do	unsupervised	learning	and	they	are	indeed
very	useful	in	that	context,	unsupervised	learning	doesn’t	really	come	into	play	with	linear
regression	or	logistic	regression.

	

Another	way	to	view	machine	learning	is	that	we	are	trying	to	accurately	model	a	system.

	

As	 an	 example,	 think	 of	 your	 brain	 driving	 a	 car.	 The	 inputs	 are	 the	 environment.	 The
outputs	are	how	you	steer	the	car.

	

X	———[real	world	system]	———	Y

	

An	automated	system	to	drive	the	car	would	be	a	program	that	outputs	the	best	Ys.

	

X	———[machine	learning	model]	———	Yprediction

	

We	hope	that	after	“training”	or	“learning”	or	“fitting”,	Yprediction	is	approximately	equal	to
Y.

	

To	look	at	this	from	an	API	perspective,	all	supervised	machine	learning	algorithms	have
2	functions:

	

train(X,	Y)	where	the	model	is	adjusted	to	be	able	to	predict	Y	accurately.

	

predict(X)	where	the	model	makes	a	prediction	for	each	input	it	is	given.





Chapter	2:	Classification	and	Regression
	

Within	supervised	learning	there	are	2	distinct	tasks:	classification	and	regression.

	

Classification	is	making	predictions	that	are	categories.

	

For	example,	the	famous	MNIST	dataset	is	a	set	of	images	that	are	labeled	0	to	9.

	

A	similar	example	is	character	recognition.	This	task	is	harder	because	you	not	only	have
to	classify	all	the	digits	from	0	to	9,	but	all	the	uppercase	and	lowercase	letters	as	well.

	

Another	example	 is	binary	classification:	given	 some	measurements	 taken	 from	a	blood
test,	determine	whether	or	not	a	person	has	a	disease.

	

Binary	classification,	as	its	name	suggests,	always	outputs	1	of	only	2	categories.

	

Regression	is	making	real-valued	predictions,	i.e.	a	number.

	

You	might	 think	 that	because	 the	MNIST	 labels	are	numbers	 that	 the	 task	 is	 regression.
This	is	not	true!

	

In	the	MNIST	problem	the	numbers	are	just	labels.	8	is	not	“closer	to”	9	than	7	is.	They
are	all	just	distinct,	unrelated	labels.

	

In	regression,	8	IS	closer	to	9	than	7	is.
	



	





Chapter	3:	Linear	Regression
	

Linear	regression,	as	its	name	suggests,	is	the	prediction	of	a	line.

	

Suppose	we	have	the	following	set	of	Xs	and	Ys:

	

	

You	can	see	that	they	form	a	perfect	line.

	

Recall	from	high	school	geometry	that	a	line	is	defined	as:

	

y	=	mx	+	b
	

If	we	were	to	do	this	by	hand,	we	could	draw	a	line	that	goes	through	all	the	points,	divide
the	“rise”	over	“run”	to	get	the	slope,	and	look	at	the	y-intercept	to	find	b.	The	prediction
error	would	be	0	because	the	points	fall	directly	on	the	line.
	

What	if	all	the	points	do	not	fall	on	the	line?	Then	we’d	want	to	find	the	“line	of	best	fit”.



	

	

	

How	do	we	define	such	a	line?
	

One	way	to	write	this	is:
	

y	=	mx	+	b	+	noise
	

Where	“noise”	is	a	Gaussian-distributed	random	variable.
	

Visually,	we	would	like	a	line	that	looks	like	it	passes	through	the	middle	of	where	most	of
the	points	reside.
	

However,	to	solve	this	problem,	we	need	to	find	the	solution	mathematically.
	

Let’s	call	our	targets	T	and	our	predictions	Y.
	

Remember	that	our	“training	data	is”:
	

X	=	{	x1,	x2,	…,	xN	}
T	=	{	t1,	t2,	…,	tN	}
	



For	a	particular	sample,	we	have:
	

yi	=	mxi	+	b
	

We	want	all	the	ti	to	be	close	to	the	yi.
	

To	accomplish	this,	we’ll	define	an	objective	function:
	

J	=	sum_from_i=1..N	{	(ti	-	yi)2	}
	

If	T	is	exactly	equal	to	Y,	this	should	be	0.
	

If	T	is	far	away	from	Y,	J	will	be	large.
	

So	we	want	to	minimize	J.	You	can	see	J	takes	the	form	of	a	quadratic,	thus	it	has	a	unique
solution.
	

How	 do	we	minimize	 quadratics?	 Recall	 from	 your	 high	 school	 calculus	 days	 that	 the
solution	is	to	take	the	derivative	of	J	and	set	it	to	0	and	solve	for	m	and	b.
	

dJ/dm	=	0

dJ/db	=	0
	

I	would	recommend	doing	this	at	home	on	your	own.	You	should	arrive	at	the	solution:
	

m	=	[	N*sum(xiyi)	-	sum(xi)*sum(yi)	]	/	[	sum(xi2)	-	sum(xi)2	]

b	=	mean(y)	-	m*mean(x)
	

Where	sum()	is	the	sum	over	all	i	from	i=1	to	N.	And	mean()	is	the	sample	mean	(sum	all
the	items	and	divide	by	N).
	

	



Extending	linear	regression	to	multiple	dimensions
	

In	real	machine	learning	problems	we	of	course	have	more	than	one	input	feature,	so	each
xi	becomes	a	vector.
	

When	x	is	1-D,	we	get	a	line.	When	x	is	2-D,	we	get	a	plane.	When	x	is	3-D	or	higher,	we
get	a	hyperplane.
	

When	 you’re	 coding	 in	 MATLAB	 or	 Python,	 it	 is	 more	 efficient	 to	 use	 “vectorized”
operations,	so	understanding	vectors	and	matrices	is	vital.
	

As	an	example,	suppose	I	wanted	to	do	the	dot	product	between	w	=	[1,	2,	3],	and	x	=	[4,
5,	6]
	

As	you	know	from	linear	algebra,	the	answer	is	1*4	+	2*5	+	3*6.
	

You	might	write	it	like	this	in	code:
	

answer	=	0

for	i	in	xrange(3):

		answer	+=	w[i]*x[i]
	

This	is	slow!
	

It	is	much	better	to	use	a	library	like	numpy	and	call	the	dot	function:
	

import	numpy	as	np

w	=	np.array([1,2,3])

x	=	np.array([4,5,6])

answer	=	w.dot(x)
	

For	 this	 reason,	 we	 usually	 look	 at	 the	 entire	 training	 set	 at	 the	 same	 time,	 instead	 of
considering	individual	input	vectors	xi	and	individual	outputs	yi.
	

So	instead	of	saying	the	output	of	our	model	is:



	

y	=	w0	+	w1x1	+	w2x2	+	…	+	wDxD
	

We	instead	say:
	

y	=	w0	+	wTx
	

Usually,	we	use	a	dummy	variable	x0	=	1,	and	combine	w0	with	[w1,	…,	wD]	so	that	we	can
just	make	the	entire	thing	one	dot	product.
	

Another	way	of	stating	this	is,	without	loss	of	generality,	we	can	always	consider	a	model
without	the	bias	term	w0.
	

If	 we	 take	 multiple	 input	 vectors	 (a	 1-dimensional	 object),	 and	 look	 at	 them
simultaneously,	we	get	a	2-dimensional	object,	which	is	a	matrix.
	

Usually	we	use	 the	 convention	 that	 each	 row	 is	 a	 sample.	 So	 the	 dimensionality	 of	 the
input	matrix	is	N	x	D,	where	D	is	 the	number	of	 input	features,	and	N	is	 the	number	of
samples.
	

Similarly,	the	dimensionality	of	T	is	N	x	1.
	

We	can	turn	our	old	objective	function:
	

J	=	sum_from_i=1..N	{	(ti	-	wTxi)2	}
	

Into	matrix	form:
	

J	=	|T	-	Xw|2

	

Note	that	the	parameter	weights	w	move	over	to	the	other	side,	because	the	matrix	X	has
each	sample	along	the	rows.	When	we	talk	about	individual	vectors,	we	usually	mean	they
are	column	vectors.
	

My	goal	 is	not	 to	 teach	you	 linear	algebra	 in	 this	book,	but	 I	would	highly	 recommend
learning	it	yourself	so	you	can	solve	these	problems	on	your	own.
	



What	you	want	to	do	here	is	take	the	gradient,	or	vector	derivative,	of	J	with	respect	to	w,	
and	set	it	to	0	to	solve	for	w.
	

Solving	for	w	should	give	you	the	answer:
	

w	=	(XTX)-1XTT
	

In	numpy	you	could	use:
	

w	=	np.linalg.inv(X.T.dot(X)).dot(X.T).dot(T)
	

A	better	way	would	be:
	

w	=	np.linalg.solve(X.T.dot(X),	X.T.dot(T))
	

Because	np.linalg.solve	solves	equations	of	the	form	Ax	=	b.
	

This	type	of	solution	is	called	“closed-form”	because	we	can	solve	for	the	answer	directly
using	 algebra.	No	other	 problem	concerning	deep	 learning	will	 be	 this	 “nice”	 from	 this
point	onward.
	

	



Putting	it	all	together
	

class	LinearRegression(object):

		def	train(self,	X,	Y):

				self.w	=	np.linalg.solve(X.T.dot(X),	X.T.dot(T))
	

		def	predict(self,	X):

				return	X.dot(self.w)
	

	



Exercise
	

Many	 statisticians	 like	 to	 apply	 linear	 regression	 to	 economic	 data.	Visit	 a	 government
website	of	your	choice,	and	download	some	census	data	in	an	area	that	you	are	interested
in.	 See	 what	 patterns	 you	 can	 find	 (income	 vs.	 some	 other	 variable	 is	 often	 a	 popular
choice).



	
	
Where	to	learn	more
	

I	 do	 a	 full	 online	 course	 on	 linear	 regression	 you	 can	 find	 at:
https://www.udemy.com/data-science-linear-regression-in-python.	 In	 this	 course	 I	 teach
you	how	to	measure	how	good	of	a	fit	your	model	 is,	a	measure	called	the	R-squared.	I
also	provide	some	examples	of	how	linear	regression	can	be	used.	I	go	over	polynomial
regression,	which	allows	you	to	predict	non-linear	functions.	My	goal	in	this	book	is	not	to
teach	 you	 the	 full	 gamut	 of	 linear	 regression,	 but	 rather	 the	 parts	 that	 are	 relevant	 to
logistic	regression	and	neural	networks,	such	that	you	are	able	to	later	“connect	the	dots”.
	

	

https://www.udemy.com/data-science-linear-regression-in-python


Is	that	all	there	is	to	linear	regression?
	

Believe	me,	there	is	much	more	to	linear	regression	analysis	than	what	is	contained	in	this
chapter.	Just	ask	a	statistician.	You	can	take	an	entire	semester-long	graduate	course	purely
on	linear	regression.	Are	those	things	useful	in	deep	learning?	Perhaps.	But	not	essential.
It	would	be	more	productive	to	power	ahead	and	look	at	linear	classification.





Chapter	4:	Linear	Classification
	

Now	that	you	know	how	to	create	a	line	/	plane	/	hyerplane,	we	are	ready	to	learn	about
classification.

	

The	image	below	shows	pictorially	what	we	are	doing	when	we	do	classification.

	

All	of	our	2-D	x’s	are	plotted	in	a	scatterplot.	Each	x	belongs	to	1	of	2	classes	-	“red”	or
“blue”.

	

You	can	see	that	there	is	a	nice	separation	between	the	red	class	and	a	blue	class	-	we	can
draw	a	line	where	most	of	the	blue	is	on	one	side	and	most	of	the	red	is	on	the	other	side.

	

This	would	yield	a	“low	classification	error”	or	a	“high	classification	rate”.

	

Note	that	the	“separating	boundary”	is	a	line	-	y	=	mx	+	b.

	

The	same	form	we	studied	in	the	previous	chapter!

	

The	question	now	is	-	how	do	we	find	this	line?	What	is	our	objective	function?	We	will
answer	this	in	the	next	chapter.

	



For	now,	let’s	think	about	what	would	happen	had	we	already	found	this	ideal	line.

	

Remember,	the	point	of	machine	learning	is	to	make	predictions	on	new	unseen	data.

	

So	 let’s	 say	we	have	a	new	 test	point,	 (x0,	y0),	 and	we	would	 like	 to	 know	whether	we
should	classify	it	as	blue	or	red.

	

First,	let’s	consider	what	would	happen	if	the	point	were	to	fall	directly	on	the	line.	Then
the	equation	would	work	out	perfectly,	y0	=	mx0	+	b.	We	would	be	just	as	certain	the	test
point	is	blue	as	we	are	that	it	is	red.

	

What	if	y0	>	mx0	+	b?	Then	this	point	falls	“above”	the	line	and	we	say	it’s	blue.

	

What	if	y0	<	mx0	+	b?	Then	this	point	falls	“below”	the	line	and	we	say	it’s	red.

	

Usually,	we	“move	the	y	over	to	the	other	side”	and	say	h(x,	y)	=	y	-	mx	-	b.	We	can	now
use	a	threshold	of	0	to	say	whether	or	not	a	test	point	is	blue	or	red.

	

More	generally,	we	could	say:

	

h(x1,	x2,	…)	=	w0	+	w1x1	+	w2x2	+	…

	

So	when	 h(x)	 >	 0,	 we	 predict	 the	 “positive”	 class,	 and	when	 h(x)	 <	 0,	 we	 predict	 the
“negative”	class.

	

I	call	the	function	h()	because	it’s	our	“hypothesis”	of	what	class	x	belongs	to.

	

Sometimes,	with	older	models	 like	 support	 vector	machines	 and	 the	perceptron,	we	use
(+1,	-1)	to	denote	the	2	classes	in	binary	classification.

	

With	deep	learning	and	neural	networks,	we	typically	use	(0,	1).

	

Although	the	visualizations	used	in	this	section	were	necessarily	in	2	dimensions,	note	that



all	the	techniques	used	do	not	require	knowing	what	the	dimensionality	of	the	input	is.

	

In	 real-world	 problems,	 we	 come	 across	 data	 that	 is	 hundreds	 or	 even	 thousands	 of
dimensions.	 A	 dataset	 like	 MNIST	 contains	 28	 x	 28	 images.	 That’s	 784	 features	 per
sample.	 Those	 are	 very	 tiny	 images	 in	 only	 one	 color.	Another	 dataset,	 the	 street	 view
house	number	dataset,	 contains	 color	 images	of	house	numbers	 that	 are	32	x	32.	While
still	a	very	tiny	image,	the	fact	that	we	need	to	account	for	the	3	color	dimensions	(R,	G,
B)	means	that	each	input	vector	is	3	x	32	x	32	=	3072	dimensions!

	



Exercise
	

Download	the	MNIST	dataset	from	kaggle.com.





Chapter	5:	Logistic	Regression
	

Alright,	onto	the	real	stuff!

	

Logistic	 regression	 is	 a	 very	 simple	 extension	 of	 the	 linear	 classifier	we	 studied	 in	 the
previous	 chapter.	 Note	 the	 odd	 name	 -	 it	 has	 “regression”	 in	 it,	 but	 is	 actually	 a
classification	algorithm.

	

Let’s	take	the	functional	form	from	the	previous	section:

	

a	=	wTx

	

Since	a	is	the	dot	product	between	the	weights	w	and	the	input	vector	x,	it	can	be	any	real
number	between	negative	infinity	and	positive	infinity.

	

In	 logistic	 regression	we	pass	 a	 through	 the	“logistic	 function”	or	 the	“sigmoid”,	which
outputs	values	between	0	and	1.

	

Graphically,	a	sigmoid	looks	like	this:

	

	

	

Mathematically,	the	output	of	our	model	is	now:

	



y	=	sigmoid(wTx)

	

Where	the	sigmoid	is	defined	as:

	

sigmoid(a)	=	1	/	[	1	+	exp(-a)	]

	

In	numpy	and	Python,	this	would	be:

	

def	sigmoid(a):

		return	1	/	(1	+	np.exp(-a))

	

One	 interpretation	 of	 the	 output	 of	 the	 sigmoid	 is	 that	 it’s	 the	 probability	 of	 being	 the
positive	class.	Or	in	other	words:

	

p(y=1	|	x)	=	sigmoid(wTx)

	

The	left	side	is	read	as	“the	probability	that	y	equals	1	given	x”.

	

What	happens	when	we	fall	exactly	on	the	boundary	of	the	2	classes?	From	the	previous
section,	we	know	that	wTx	=	0.	We	can	see	from	the	figure	above	that	sigmoid(0)	=	0.5.	It
makes	sense	that	the	probability	that	y	=	1	is	0.5	if	we	fall	directly	on	the	line.	It	means
“we	could	go	either	way”.

	

	



tanh	output
	

One	can	also	use	the	hyperbolic	tangent	instead	of	the	sigmoid.	It	has	the	same	shape	as	a
sigmoid,	 but	 a	 different	 scale.	 The	 output	 ranges	 between	 -1	 and	 1,	 thus	 it	 cannot	 be
considered	a	probability.

	

The	definition	of	tanh	is:

	

tanh(a)	=	[	exp(a)	-	exp(-a)	]	/	[	exp(a)	+	exp(-a)	]

	

Numpy	as	a	built	in	tanh	function:	np.tanh()

	

	



softmax	output
	

What	 happens	 when	 our	 output	 is	 more	 than	 2	 classes?	 Ex.	 MNIST	 or	 character
recognition.	With	binary	classification,	we	only	needed	1	output	node,	because	P(y=0	|	x)
=	1	-	P(y	=	1	|	x).

	

i.e.	The	probability	of	all	possibilities	must	sum	to	1.

	

Let’s	consider	what	would	happen	if	we	used	2	output	nodes.

	

We	would	have:

	

a1	=	w1Tx

a0	=	w0Tx

	

Recall	 that	a0	and	a1	can	be	either	negative	or	positive.	Since	probabilities	must	be	0	or
positive,	we	can	enforce	positivity	by	exponentiating	a.

	

So	we	have	2	outputs,	exp(a1)	and	exp(a0).	How	do	we	ensure	these	sum	to	1?

	

Simply	divide	by	exp(a1)	+	exp(a0).

	

So	now:

	

p(y=1	|	x)	=	exp(a1)	/	[	exp(a1)	+	exp(a0)	]

p(y=0	|	x)	=	exp(a0)	/	[	exp(a1)	+	exp(a0)	]

	

You	can	see	that	it	would	be	very	easy	to	extend	this	to	any	number	of	classes.

	

Note	that	we	can	“vectorize”	a,	so	that,	after	also	combining	the	individual	weight	vectors
into	a	weight	matrix,	W	=	[w1	w2	…	wK	]	we	can	simply	write:

	



A	=	XW

Y	=	softmax(A)

	

	



Neurons
	

Sometimes,	logistic	regression	is	referred	to	as	the	“logistic	unit”	or	neuron.	Why?	It	has	a
few	properties	in	common	with	the	biological	neuron.	Appropriately,	when	you	hook	up	a
bunch	of	neurons	/	logistic	units	together,	you	get	a	neural	network.

	

I	discuss	 the	similarity	between	digital	neurons	and	biological	neurons	more	 in	depth	 in
my	next	book,	Deep	Learning	in	Python:	Master	Data	Science	and	Machine	Learning	with
Modern	Neural	Networks	written	in	Python,	Theano,	and	TensorFlow.

	

	

http://www.amazon.com/gp/product/B01CVJ19E8


Exercise
	

Load	the	data	from	MNIST	(or	another	dataset	of	your	choice)	into	two	numpy	arrays,	the
inputs	X	and	the	targets	T.	X	should	be	an	N	x	D	array,	where	N	is	the	number	of	samples,
and	D	is	the	dimensionality	(D	=	784	if	you	are	looking	at	MNIST).	T	should	be	an	N	x	K
array	(where	K	=	10	if	you	are	looking	at	MNIST).	The	raw	data	will	be	in	the	form	of	an
N	 x	 1	 array	where	 the	 elements	 are	 values	 from	 0..9.	 You	will	 need	 to	 turn	 it	 into	 an
indicator	matrix	of	size	N	x	K	where	the	values	are	0	or	1.

	

Write	 the	code	 to	 initialize	 the	weights	W	to	come	from	a	Gaussian-distributed	array	of
samples,	and	write	a	function	that	takes	in	X	and	W	and	outputs	a	prediction	Y.

	

It	should	look	something	like	this	(notice	I’ve	added	the	bias	term	for	your	convenience):

	

W	=	np.random.randn(D,	K)

b	=	np.random.randn(K)

	

def	softmax(a):

		expA	=	np.exp(A)

		return	expA	/	expA.sum(axis=1,	keepdims=True)

	

def	predict(X,	W):

		return	softmax(	X.dot(W)	+	b	)





Chapter	6:	Maximum	Likelihood	Estimation
	

You	already	know	that	to	find	the	sample	mean	of	a	random	variable,	you	simply	sum	up
all	the	samples	and	divide	by	the	number	of	samples.

	

The	formal	way	of	deriving	this	solution	is	called	maximum	likelihood	estimation.

	

Suppose	there	is	some	parameter	you	want	to	estimate,	let’s	call	it	“w”,	which	can	be	the
mean,	variance,	or	any	other	parameter.	The	likelihood	is	given	by:

	

L	=	p(X	|	w)

	

Where	X	is	the	data	samples.

	

For	instance,	suppose	we	were	looking	at	a	Gaussian	with	unit	variance.

	

L	=	product_from_i=1..N	{	(1	/	sqrt(2pi))	*	exp(	-(1/2)	(xi	-	mu)2	)	}

	

We	are	able	to	take	the	product	of	the	probability	of	each	sample	because	each	sample	is
assumed	to	be	independent.

	

So	L	=	p(x1	|	mu)	p(x2	|	mu)	…	p(xN	|	mu)

	

We	would	 like	 to	maximize	L	with	 respect	 to	mu,	 i.e.	maximize	 the	 likelihood	over	 the
entire	training	set.

	

To	do	this	we	go	back	to	our	old	friend	calculus.	Take	the	derivative	of	L	with	respect	to
mu,	set	it	to	0,	and	solve	for	mu.

	

You	should	arrive	at	the	expected	answer.

	

Note	that	before	you	do	an	actual	calculation,	you’ll	want	to	take	the	log	of	the	likelihood
(usually	 just	 called	 the	 log-likelihood)	 and	 maximize	 that.	 These	 functions	 are	 usually



easier	to	optimize	after	taking	the	log.

	

Now	it	is	easy	to	see	why	we	use	objective	functions	like	the	squared	error.

	

With	linear	regression,	we	assumed	y	~	N(wTx,	some_variance).	(In	English,	this	means	y
is	normally	distributed	with	mean	equal	to	wTx	and	variance	equal	to	some_variance).

	

Another	way	of	writing	that	is	y	=	wTx	+	noise,	where	noise	~	N(0,	some_variance).

	

What	 happens	 when	 you	 set	 up	 the	 likelihood	 and	 take	 the	 log?	 You	 simply	 get	 the
squared	error!

	

(Technically,	you	get	the	negative	of	the	squared	error)

	

Maximizing	the	likelihood	is	thus	the	same	as	minimizing	the	squared	error	objective.

	

	



Sigmoid
	

We	 do	 something	 a	 little	 different	 for	 the	 sigmoid	 /	 logistic	 regression.	 The	 error	 isn’t
really	normally	distributed,	since	the	output	can	only	be	between	0	and	1.	The	likelihood
here	is	more	like	a	coin	toss.

	

L	=	product_from_i=1..N	{	pt(i)	(1-p)(1	-	t(i))	}

	

For	the	output	of	a	logistic:

	

L	=	product_from_i=1..N	{	y(i)t(i)	(1-y(i))(1	-	t(i))	}

	

If	you	took	the	negative-log	of	this	you	would	get	the	cross-entropy	error:

	

J	=	-sum_from_i=1..N	{	ti	log(yi)	+	(1	-	ti)	log(1	-	yi)	}

	

Where	 I’m	using	 t(i)	=	 ti	 interchangeably	due	 to	 limitations	 in	 the	output	 format	of	 this
book.

	

	



Softmax
	

Whereas	the	sigmoid	is	like	a	coin	toss,	softmax	is	like	rolling	a	die.

	

Since	 there	are	K	possibilities	 (K	output	classes)	 in	 softmax,	we	need	 to	consider	all	of
them.	Usually	the	target	variables	are	represented	by	an	indicator	matrix,	so	t[i,	k]	=	1	if
the	ith	sample	belongs	to	the	kth	class.

	

Note	 that	 this	 means	 both	 the	 targets	 and	 the	 model	 output,	 considering	 all	 data	 point
simultaneously,	would	be	matrices	of	size	N	x	K.

	

Performing	 the	 same	 process	 as	 in	 the	 previous	 2	 sections,	 we	 would	 arrive	 at	 the
objective	function:

	

J	=	-sum_from_i=1..N	{	sum_from_k=1..K	{	t[i,k]	*	log(y[i,k])	}	}

	

	



Exercise
	

Write	a	function	to	calculate	the	cost	function	for	our	MNIST	example.	It	should	look	like
this:

	

def	cost(T,	Y):

		return	-(	T	*	np.log(Y)	).sum()



	





Chapter	7:	Gradient	Descent
	

	

Now	 that	 we	 have	 our	 likelihood	 functions,	 what	 comes	 next?	 Recall	 that	 for	 linear
regression,	we	were	able	to	solve	for	w	directly	in	terms	of	X	and	Y.

	

Because	 of	 the	 “nonlinearity”	 (the	 sigmoid)	 we	 used	 in	 logistic	 regression,	 this	 is	 no
longer	possible.	 Instead,	we	use	a	more	general	numerical	optimization	 technique	called
“gradient	descent”.

	

We	start	by	initializing	w	to	a	random	value	(usually	Gaussian-distributed).

	

In	a	picture,	gradient	descent	looks	like	this.

	

	

	

Convince	yourself	that	by	going	along	the	direction	of	the	gradient,	we	will	always	end	up
at	a	“lower”	J	than	where	we	started.

	

Again,	since	my	objective	in	this	book	is	not	to	teach	you	calculus	and	linear	algebra,	I	am
simply	going	 to	provide	you	with	 the	 solution,	but	 I	would	highly	 recommend	 teaching
yourself	how	to	arrive	at	the	solution	yourself.

	

dJ	/	dw	=	XT(Y	-	T)



	

These	 are	 the	 full	 data	 matrices	 and	 the	 same	 formula	 works	 for	 both	 sigmoid	 and
softmax.	Convince	 yourself	 that	 the	 right-side	 outputs	 a	 vector	 of	 size	D	 x	 1	when	 the
output	is	a	sigmoid,	and	a	matrix	of	size	D	x	K	when	the	output	is	softmax.

	

Once	you	find	the	gradient,	you	want	to	take	small	steps	in	that	direction.

	

You	can	imagine	that	if	your	steps	are	too	large,	you’ll	just	end	up	on	the	“other	side”	of
the	canyon,	bouncing	back	and	forth!

	

Thus	we	do	our	weight	updates	like	so:

	

weight	=	weight	-	learning_rate	*	gradient_of_J_wrt_weight

	

In	a	more	“mathy”	form:

	

w	=	w	-	learning_rate	*	dJ/dw

	

Where	the	learning	rate	is	a	very	small	number,	i.e.	0.01.	(Note:	if	the	number	is	too	small,
gradient	descent	will	take	a	very	long	time.	I	show	you	how	to	optimize	this	value	in	my
Udemy	course	-	https://www.udemy.com/data-science-logistic-regression-in-python).

	

That	is	all	there	is	to	it!

	

If	you	want	to	convince	yourself	that	this	works,	I	would	recommend	trying	to	optimize	a
function	you	already	know	how	to	solve,	such	as	a	quadratic.

	

For	example,	your	objective	would	be	J	=	x**2	+	x,	and	the	gradient	of	J	is	2x	+	1,	so	the
minimum	can	be	found	at	-1/2.

	

https://www.udemy.com/data-science-logistic-regression-in-python


Exercise
	

Write	 a	 complete	 logistic	 regression	 classifier	 that	 can	 do	 both	 learning	 and	 prediction,
and	use	it	on	a	dataset	like	MNIST	to	see	what	accuracy	you	can	get.

	

It	should	look	something	like	this:

	

def	grad(Y,	T,	X):

		return	X.T.dot(Y	-	T)

	

for	i	in	xrange(epochs):

		Y	=	predict(X,	W)

		W	-=	learning_rate	*	grad(Y,	T,	X)

	

Also	keep	 track	of	 the	cost	at	each	 iteration	and	plot	 it	using	matplotlib	at	 the	end.	You
should	notice	a	steep	decrease	at	the	beginning	but	it	should	level	out	quickly.

	

Write	a	function	to	do	linear	regression	with	gradient	descent.	You	should	be	able	to	find
the	derivative	of	the	squared	error	quite	easily	since	it’s	just	a	quadratic.

	



	





Chapter	8:	The	XOR	and	Donut	Problems
	

Logistic	 regression	 is	 really	 great	 for	 problems	 that	 have	 a	 linear	 boundary,	 since	 the
weights	define	a	line	or	a	plane.	There	are	some	classical	problems	that	linear	classifiers
can’t	solve	in	their	basic	form,	but	I	will	show	you	how	to	modify	logistic	regression	in
order	to	do	so.

	

First,	let’s	look	at	the	XOR	problem:

	

	

XOR	is	a	logic	gate	like	AND	and	OR.	The	outputs	are	defined	as	follows:

	

0	XOR	0	=	0

1	XOR	0	=	1

0	XOR	1	=	1

1	XOR	1	=	0

	

As	you	can	see,	there	is	no	line	that	separates	the	two	classes.

	

Now	let	us	look	at	the	donut	problem:

	

	



As	you	can	see,	this	problem	also	contains	no	linear	boundary	between	the	two	classes.

	

So	what	do	we	do	in	these	two	cases?

	

For	the	XOR	problem,	create	a	third	dimension	that	is	derived	from	the	first	two,	x3	=	x1x2.
Try	to	draw	a	3-D	plot	to	see	how	a	plane	could	separate	the	two	classes	now.

	

For	the	donut	problem,	we	see	that	the	radius	is	a	discriminating	feature.	So	if	we	created
a	third	dimension	x3	=	sqrt(x12	+	x22),	we	would	be	able	to	draw	a	plane	between	the	two
classes.

	

What	is	the	disadvantage	of	this?

	

We	have	to	manually	come	up	with	features!

	

In	practice,	there	are	just	way	too	many	to	consider.

	

Think	about	the	street	view	house	numbers	dataset,	where	D	=	3072.	We	would	consider
x1x2,	then	x1x3,	then	x1x4,	etc…



	

This	can	also	lead	to	overfitting.

	

The	great	advantage	of	deep	learning	and	neural	networks	is	that	they	automatically	find
features	for	us.

	



Exercise
	

Write	code	to	generate	the	data	for	the	XOR	problem	and	the	donut	problem.

	

Use	the	logistic	regression	classifier	with	no	hand-crafted	features	to	prove	to	yourself	that
this	yields	a	low	classification	rate.

	

Next,	 add	 the	 features	 I’ve	 described	 in	 this	 chapter	 and	 show	 that	 you	 can	 achieve
almost-perfect	(or	perfect	in	the	case	of	XOR)	discrimination.



	



Conclusion
	

I	really	hope	you	had	as	much	fun	reading	this	book	as	I	did	making	it.

	

Did	you	find	anything	confusing?	Do	you	have	any	questions?

	

I	am	always	available	to	help.	Just	email	me	at:	info@lazyprogrammer.me

	

Do	you	want	 to	 learn	more	 about	 deep	 learning?	Perhaps	online	 courses	 are	more	your
style.	I	happen	to	have	a	few	of	them	on	Udemy.

	

Was	the	material	in	this	book	easy?	Do	you	want	to	dive	straight	into	neural	networks	and
deep	learning?	Check	out	my	Udemy	course:

	

Data	Science:	Deep	Learning	in	Python

	

https://udemy.com/data-science-deep-learning-in-python

	

Are	you	comfortable	with	this	material,	and	you	want	to	take	your	deep	learning	skillset	to
the	next	level?	Then	my	follow-up	Udemy	course	on	deep	learning	is	for	you.	Similar	to
this	book,	I	 take	you	through	the	basics	of	Theano	and	TensorFlow	-	creating	functions,
variables,	and	expressions,	and	build	up	neural	networks	from	scratch.	I	teach	you	about
ways	to	accelerate	the	learning	process,	including	batch	gradient	descent,	momentum,	and
adaptive	 learning	 rates.	 I	 also	 show	you	 live	how	 to	create	 a	GPU	 instance	on	Amazon
AWS	EC2,	and	prove	to	you	that	training	a	neural	network	with	GPU	optimization	can	be
orders	of	magnitude	faster	than	on	your	CPU.

	

Data	Science:	Practical	Deep	Learning	in	Theano	and	TensorFlow

	

https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow

	

This	next	course	contains	very	similar	material	to	this	book,	but	I	derive	everything	step-
by-step	on	video.

	

mailto:info@lazyprogrammer.me
https://udemy.com/data-science-deep-learning-in-python
https://udemy.com/data-science-deep-learning-in-python
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow/
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow


In	 this	 course	 I	 teach	 the	 theory	 of	 logistic	 regression	 (our	 computational	model	 of	 the
neuron),	and	give	you	an	in-depth	look	at	binary	classification,	manually	creating	features,
and	gradient	descent.	You	might	want	to	check	this	course	out	if	you	found	the	material	in
this	book	too	challenging.

	

Data	Science:	Logistic	Regression	in	Python

	

https://udemy.com/data-science-logistic-regression-in-python

	

This	next	course	was	the	basis	for	Chapter	3	in	this	book	on	linear	regression.

	

To	get	an	even	simpler	picture	of	machine	learning	in	general,	where	we	don’t	even	need
gradient	descent	and	can	just	solve	for	the	optimal	model	parameters	directly	in	“closed-
form”,	you’ll	want	to	check	out	my	first	Udemy	course	on	the	classical	statistical	method	-
linear	regression:

	

Data	Science:	Linear	Regression	in	Python

	

https://www.udemy.com/data-science-linear-regression-in-python

	

If	you	are	interested	in	learning	about	how	machine	learning	can	be	applied	to	language,
text,	and	speech,	you’ll	want	to	check	out	my	course	on	Natural	Language	Processing,	or
NLP:

	

Data	Science:	Natural	Language	Processing	in	Python

	

https://www.udemy.com/data-science-natural-language-processing-in-python

	

If	you	are	interested	in	learning	SQL	-	structured	query	language	-	a	language	that	can	be
applied	to	databases	as	small	as	the	ones	sitting	on	your	iPhone,	to	databases	as	large	as
the	ones	that	span	multiple	continents	-	and	not	only	learn	the	mechanics	of	the	language
but	know	how	to	apply	it	to	real-world	data	analytics	and	marketing	problems?	Check	out
my	course	here:

	

SQL	for	Marketers:	Dominate	data	analytics,	data	science,	and	big	data

https://udemy.com/data-science-logistic-regression-in-python
https://udemy.com/data-science-logistic-regression-in-python
https://www.udemy.com/data-science-linear-regression-in-python
https://www.udemy.com/data-science-linear-regression-in-python
https://www.udemy.com/data-science-natural-language-processing-in-python
https://www.udemy.com/data-science-natural-language-processing-in-python
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data


	
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data

	

Finally,	I	am	always	giving	out	coupons	and	letting	you	know	when	you	can	get	my	stuff
for	free.	But	you	can	only	do	this	if	you	are	a	current	student	of	mine!	Here	are	some	ways
I	notify	my	students	about	coupons	and	free	giveaways:

	

My	newsletter,	which	you	can	sign	up	 for	at	http://lazyprogrammer.me	 (it	 comes	with	a
free	6-week	intro	to	machine	learning	course)

	

My	Twitter,	https://twitter.com/lazy_scientist

	

My	Facebook	page,	https://facebook.com/lazyprogrammer.me	(don’t	forget	to	hit	“like”!)

https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data
http://lazyprogrammer.me
https://twitter.com/lazy_scientist
https://facebook.com/lazyprogrammer.me

	Introduction
	Chapter 1: What is Machine Learning?
	Chapter 2: Classification and Regression
	Chapter 3: Linear Regression
	Chapter 4: Linear Classification
	Chapter 5: Logistic Regression
	Chapter 6: Maximum Likelihood Estimation
	Chapter 7: Gradient Descent
	Chapter 8: The XOR and Donut Problems
	Conclusion

