
Apache Storm

Apache Storm

i

About the Tutorial
Storm was originally created by Nathan Marz and team at BackType. BackType is a social
analytics company. Later, Storm was acquired and open-sourced by Twitter. In a short time,
Apache Storm became a standard for distributed real-time processing system that allows you to
process large amount of data, similar to Hadoop. Apache Storm is written in Java and Clojure.
It is continuing to be a leader in real-time analytics.

This tutorial will explore the principles of Apache Storm, distributed messaging, installation,
creating Storm topologies and deploy them to a Storm cluster, workflow of Trident, real-time
applications and finally concludes with some useful examples.

Audience
This tutorial has been prepared for professionals aspiring to make a career in Big Data Analytics
using Apache Storm framework. This tutorial will give you enough understanding on creating
and deploying a Storm cluster in a distributed environment.

Prerequisites
Before proceeding with this tutorial, you must have a good understanding of Core Java and any
of the Linux flavors.

Copyright & Disclaimer
© Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.
Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any
contents or a part of contents of this e-book in any manner without written consent of the
publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.
provides no guarantee regarding the accuracy, timeliness or completeness of our website or its
contents including this tutorial. If you discover any errors on our website or in this tutorial,
please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Apache Storm

ii

Table of Contents
About the Tutorial ... i

Audience.. i

Prerequisites ... i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. APACHE STORM – INTRODUCTION .. 1

What is Apache Storm? .. 1

Apache Storm vs Hadoop ... 1

Use-Cases of Apache Storm .. 2

Apache Storm – Benefits .. 3

2. APACHE STORM – CORE CONCEPTS .. 4

Topology... 5

Tasks ... 5

Workers .. 6

Stream Grouping ... 6

3. STORM – CLUSTER ARCHITECTURE ... 9

4. APACHE STORM – WORKFLOW ... 11

5. STORM – DISTRIBUTED MESSAGING SYSTEM ... 12

What is Distributed Messaging System? .. 12

Thrift Protocol .. 13

6. APACHE STORM – INSTALLATION ... 14

Step 1: Verifying Java Installation ... 14

Step 2: ZooKeeper Framework Installation .. 15

Step 3: Apache Storm Framework Installation ... 17

Apache Storm

iii

7. APACHE STORM – WORKING EXAMPLE ... 19

Scenario – Mobile Call Log Analyzer ... 19

Spout Creation ... 19

Bolt Creation .. 23

Call log Creator Bolt .. 24

Call log Counter Bolt ... 26

Creating Topology ... 27

Local Cluster .. 28

Building and Running the Application .. 29

Non-JVM languages .. 30

8. APACHE STORM – TRIDENT .. 32

Trident Topology ... 32

Trident Tuples .. 32

Trident Spout ... 32

Trident Operations .. 33

State Maintenance ... 37

Distributed RPC ... 37

When to Use Trident? ... 37

Working Example of Trident ... 37

Building and Running the Application .. 41

9. APACHE STORM IN TWITTER .. 43

Twitter ... 43

Hashtag Reader Bolt ... 47

Hashtag Counter Bolt .. 49

Submitting a Topology .. 50

Building and Running the Application .. 51

Apache Storm

iv

10. APACHE STORM IN YAHOO! FINANCE .. 53

Spout Creation ... 53

Bolt Creation .. 55

Submitting a Topology .. 57

Building and Running the Application .. 58

11. APACHE STORM – APPLICATIONS .. 59

Klout .. 59

The Weather Channel .. 59

Telecom Industry ... 59

Apache Storm

1

What is Apache Storm?
Apache Storm is a distributed real-time big data-processing system. Storm is designed to
process vast amount of data in a fault-tolerant and horizontal scalable method. It is a streaming
data framework that has the capability of highest ingestion rates. Though Storm is stateless, it
manages distributed environment and cluster state via Apache ZooKeeper. It is simple and you
can execute all kinds of manipulations on real-time data in parallel.

Apache Storm is continuing to be a leader in real-time data analytics. Storm is easy to setup,
operate and it guarantees that every message will be processed through the topology at least
once.

Apache Storm vs Hadoop
Basically Hadoop and Storm frameworks are used for analyzing big data. Both of them
complement each other and differ in some aspects. Apache Storm does all the operations except
persistency, while Hadoop is good at everything but lags in real-time computation. The following
table compares the attributes of Storm and Hadoop.

1. Apache Storm – Introduction

Apache Storm

2

Use-Cases of Apache Storm
Apache Storm is very famous for real-time big data stream processing. For this reason, most of
the companies are using Storm as an integral part of their system. Some notable examples are
as follows:

Twitter – Twitter is using Apache Storm for its range of “Publisher Analytics products”.
“Publisher Analytics Products” process each and every tweets and clicks in the Twitter Platform.
Apache Storm is deeply integrated with Twitter infrastructure.

NaviSite – NaviSite is using Storm for Event log monitoring/auditing system. Every logs
generated in the system will go through the Storm. Storm will check the message against the
configured set of regular expression and if there is a match, then that particular message will be
saved to the database.

Wego – Wego is a travel metasearch engine located in Singapore. Travel related data comes
from many sources all over the world with different timing. Storm helps Wego to search real-
time data, resolves concurrency issues and find the best match for the end-user.

Storm Hadoop

Real-time stream processing

Batch processing

Stateless

Stateful

Master/Slave architecture with ZooKeeper
based coordination. The master node is
called as nimbus and slaves are
supervisors.

Master-slave architecture with/without
ZooKeeper based coordination. Master node
is job tracker and slave node is task
tracker.

A Storm streaming process can access tens
of thousands messages per second on
cluster.

Hadoop Distributed File System (HDFS) uses
MapReduce framework to process vast
amount of data that takes minutes or hours.

Storm topology runs until shutdown by the
user or an unexpected unrecoverable failure.

MapReduce jobs are executed in a sequential
order and completed eventually.

Both are distributed and fault-tolerant

If nimbus / supervisor dies, restarting makes
it continue from where it stopped, hence
nothing gets affected.

If the JobTracker dies, all the running jobs are
lost.

Apache Storm

3

Apache Storm – Benefits
Here is a list of the benefits that Apache Storm offers:

x Storm is open source, robust, and user friendly. It could be utilized in small companies
as well as large corporations.

x Storm is fault tolerant, flexible, reliable, and supports any programming language.

x Allows real-time stream processing.

x Storm is unbelievably fast because it has enormous power of processing the data.

x Storm can keep up the performance even under increasing load by adding resources
linearly. It is highly scalable.

x Storm performs data refresh and end-to-end delivery response in seconds or minutes
depends upon the problem. It has very low latency.

x Storm has operational intelligence.

x Storm provides guaranteed data processing even if any of the connected nodes in the
cluster die or messages are lost.

Apache Storm

4

Apache Storm reads raw stream of real-time data from one end and passes it through a sequence
of small processing units and output the processed / useful information at the other end.

The following diagram depicts the core concept of Apache Storm.

Let us now have a closer look at the components of Apache Storm:

Components Description

Tuple
Tuple is the main data structure in Storm. It is a list of ordered elements.
By default, a Tuple supports all data types. Generally, it is modelled as a
set of comma separated values and passed to a Storm cluster.

Stream Stream is an unordered sequence of tuples.

Spouts

Source of stream. Generally, Storm accepts input data from raw data
sources like Twitter Streaming API, Apache Kafka queue, Kestrel queue,
etc. Otherwise you can write spouts to read data from datasources.
“ISpout" is the core interface for implementing spouts. Some of the
specific interfaces are IRichSpout, BaseRichSpout, KafkaSpout, etc.

Bolts

Bolts are logical processing units. Spouts pass data to bolts and bolts
process and produce a new output stream. Bolts can perform the
operations of filtering, aggregation, joining, interacting with data sources
and databases. Bolt receives data and emits to one or more bolts. “IBolt”
is the core interface for implementing bolts. Some of the common
interfaces are IRichBolt, IBasicBolt, etc.

2. Apache Storm – Core Concepts

Apache Storm

5

Let’s take a real-time example of “Twitter Analysis” and see how it can be modelled in Apache
Storm. The following diagram depicts the structure.

The input for the “Twitter Analysis” comes from Twitter Streaming API. Spout will read the tweets
of the users using Twitter Streaming API and output as a stream of tuples. A single tuple from
the spout will have a twitter username and a single tweet as comma separated values. Then,
this steam of tuples will be forwarded to the Bolt and the Bolt will split the tweet into individual
word, calculate the word count, and persist the information to a configured datasource. Now, we
can easily get the result by querying the datasource.

Topology
Spouts and bolts are connected together and they form a topology. Real-time application logic
is specified inside Storm topology. In simple words, a topology is a directed graph where vertices
are computation and edges are stream of data.

A simple topology starts with spouts. Spout emits the data to one or more bolts. Bolt represents
a node in the topology having the smallest processing logic and the output of a bolt can be
emitted into another bolt as input.

Storm keeps the topology always running, until you kill the topology. Apache Storm’s main job
is to run the topology and will run any number of topology at a given time.

Tasks
Now you have a basic idea on spouts and bolts. They are the smallest logical unit of the topology
and a topology is built using a single spout and an array of bolts. They should be executed
properly in a particular order for the topology to run successfully. The execution of each and

Apache Storm

6

every spout and bolt by Storm is called as “Tasks”. In simple words, a task is either the execution
of a spout or a bolt. At a given time, each spout and bolt can have multiple instances running in
multiple separate threads.

Workers
A topology runs in a distributed manner, on multiple worker nodes. Storm spreads the tasks
evenly on all the worker nodes. The worker node’s role is to listen for jobs and start or stop the
processes whenever a new job arrives.

Stream Grouping
Stream of data flows from spouts to bolts or from one bolt to another bolt. Stream grouping
controls how the tuples are routed in the topology and helps us to understand the tuples flow in
the topology. There are four in-built groupings as explained below.

Shuffle Grouping
In shuffle grouping, an equal number of tuples is distributed randomly across all of the workers
executing the bolts. The following diagram depicts the structure.

Apache Storm

7

Field Grouping
The fields with same values in tuples are grouped together and the remaining tuples kept
outside. Then, the tuples with the same field values are sent forward to the same worker
executing the bolts. For example, if the stream is grouped by the field “word”, then the tuples
with the same string, “Hello” will move to the same worker. The following diagram shows how
Field Grouping works.

Global Grouping
All the streams can be grouped and forward to one bolt. This grouping sends tuples generated
by all instances of the source to a single target instance (specifically, pick the worker with lowest
ID).

Apache Storm

8

All Grouping
All Grouping sends a single copy of each tuple to all instances of the receiving bolt. This kind of
grouping is used to send signals to bolts. All grouping is useful for join operations.

Apache Storm

9

One of the main highlight of the Apache Storm is that it is a fault-tolerant, fast with no “Single
Point of Failure” (SPOF) distributed application. We can install Apache Storm in as many systems
as needed to increase the capacity of the application.

Let’s have a look at how the Apache Storm cluster is designed and its internal architecture. The
following diagram depicts the cluster design.

Apache Storm has two type of nodes, Nimbus (master node) and Supervisor (worker node).
Nimbus is the central component of Apache Storm. The main job of Nimbus is to run the Storm
topology. Nimbus analyzes the topology and gathers the task to be executed. Then, it will
distributes the task to an available supervisor.

A supervisor will have one or more worker process. Supervisor will delegate the tasks to worker
processes. Worker process will spawn as many executors as needed and run the task. Apache
Storm uses an internal distributed messaging system for the communication between nimbus
and supervisors.

Components Description

Nimbus

Nimbus is a master node of Storm cluster. All other nodes in the
cluster are called as worker nodes. Master node is responsible for
distributing data among all the worker nodes, assign tasks to worker
nodes and monitoring failures.

3. Storm – Cluster Architecture

Apache Storm

10

Supervisor

The nodes that follow instructions given by the nimbus are called as
Supervisors. A supervisor has multiple worker processes and it
governs worker processes to complete the tasks assigned by the
nimbus.

Worker process

A worker process will execute tasks related to a specific topology. A
worker process will not run a task by itself, instead it creates
executors and asks them to perform a particular task. A worker
process will have multiple executors.

Executor
An executor is nothing but a single thread spawn by a worker
process. An executor runs one or more tasks but only for a specific
spout or bolt.

Task A task performs actual data processing. So, it is either a spout or a
bolt.

ZooKeeper framework

Apache ZooKeeper is a service used by a cluster (group of nodes)
to coordinate between themselves and maintaining shared data with
robust synchronization techniques. Nimbus is stateless, so it
depends on ZooKeeper to monitor the working node status.

ZooKeeper helps the supervisor to interact with the nimbus. It is
responsible to maintain the state of nimbus and supervisor.

Storm is stateless in nature. Even though stateless nature has its own disadvantages, it actually
helps Storm to process real-time data in the best possible and quickest way.

Storm is not entirely stateless though. It stores its state in Apache ZooKeeper. Since the state
is available in Apache ZooKeeper, a failed nimbus can be restarted and made to work from where
it left. Usually, service monitoring tools like monit will monitor Nimbus and restart it if there is
any failure.

Apache Storm also have an advanced topology called Trident Topology with state maintenance
and it also provides a high-level API like Pig. We will discuss all these features in the coming
chapters.

Apache Storm

11

A working Storm cluster should have one nimbus and one or more supervisors. Another
important node is Apache ZooKeeper, which will be used for the coordination between the nimbus
and the supervisors.

Let us now take a close look at the workflow of Apache Storm:

x Initially, the nimbus will wait for the “Storm Topology” to be submitted to it. The

x Once a topology is submitted, it will process the topology and gather all the tasks that
are to be carried out and the order in which the task is to be executed.

x Then, the nimbus will evenly distribute the tasks to all the available supervisors.

x At a particular time interval, all supervisors will send heartbeats to the nimbus to inform
that they are still alive.

x When a supervisor dies and doesn’t send a heartbeat to the nimbus, then the nimbus
assigns the tasks to another supervisor.

x When the nimbus itself dies, supervisors will work on the already assigned task without
any issue.

x Once all the tasks are completed, the supervisor will wait for a new task to come in.

x In the meantime, the dead nimbus will be restarted automatically by service monitoring
tools.

x The restarted nimbus will continue from where it stopped. Similarly, the dead supervisor
can also be restarted automatically. Since both the nimbus and the supervisor can be
restarted automatically and both will continue as before, Storm is guaranteed to process
all the task at least once.

x Once all the topologies are processed, the nimbus waits for a new topology to arrive and
similarly the supervisor waits for new tasks.

By default, there are two modes in a Storm cluster:

x Local mode: This mode is used for development, testing, and debugging because it is
the easiest way to see all the topology components working together. In this mode, we
can adjust parameters that enable us to see how our topology runs in different Storm
configuration environments. In Local mode, storm topologies run on the local machine in
a single JVM.

x Production mode: In this mode, we submit our topology to the working storm cluster,
which is composed of many processes, usually running on different machines. As
discussed in the workflow of storm, a working cluster will run indefinitely until it is
shutdown.

4. Apache Storm – Workflow

Apache Storm

12

Apache Storm processes real-time data and the input normally comes from a message queuing
system. An external distributed messaging system will provide the input necessary for the real-
time computation. Spout will read the data from the messaging system and convert it into tuples
and input into the Apache Storm. The interesting fact is that Apache Storm uses its own
distributed messaging system internally for the communication between its nimbus and
supervisor.

What is Distributed Messaging System?
Distributed messaging is based on the concept of reliable message queuing. Messages are
queued asynchronously between client applications and messaging systems. A distributed
messaging system provides the benefits of reliability, scalability, and persistence.

Most of the messaging patterns follow the publish-subscribe model (simply Pub-Sub) where
the senders of the messages are called publishers and those who want to receive the messages
are called subscribers.

Once the message has been published by the sender, the subscribers can receive the selected
message with the help of a filtering option. Usually we have two types of filtering, one is topic-
based filtering and another one is content-based filtering.

Note that the pub-sub model can communicate only via messages. It is a very loosely coupled
architecture; even the senders don’t know who their subscribers are. Many of the message
patterns enable with message broker to exchange publish messages for timely access by many
subscribers. A real-life example is Dish TV, which publishes different channels like sports,
movies, music, etc., and anyone can subscribe to their own set of channels and get them
whenever their subscribed channels are available.

5. Storm – Distributed Messaging System

Apache Storm

13

The following table describes some of the popular high throughput messaging systems:

Distributed messaging
system Description

Apache Kafka

Kafka was developed at LinkedIn corporation and later it became
a sub-project of Apache. Apache Kafka is based on broker-
enabled, persistent, distributed publish-subscribe model. Kafka is
fast, scalable, and highly efficient.

RabbitMQ RabbitMQ is an open source distributed robust messaging
application. It is easy to use and runs on all platforms.

JMS(Java Message
Service)

JMS is an open source API that supports creating, reading, and
sending messages from one application to another. It provides
guaranteed message delivery and follows publish-subscribe
model.

ActiveMQ ActiveMQ messaging system is an open source API of JMS.

ZeroMQ ZeroMQ is broker-less peer-peer message processing. It provides
push-pull, router-dealer message patterns.

Kestrel Kestrel is a fast, reliable, and simple distributed message queue.

Thrift Protocol
Thrift was built at Facebook for cross-language services development and remote procedure call
(RPC). Later, it became an open source Apache project. Apache Thrift is an Interface Definition
Language and allows to define new data types and services implementation on top of the
defined data types in an easy manner.

Apache Thrift is also a communication framework that supports embedded systems, mobile
applications, web applications, and many other programming languages. Some of the key
features associated with Apache Thrift are its modularity, flexibility, and high performance. In
addition, it can perform streaming, messaging, and RPC in distributed applications.

Storm extensively uses Thrift Protocol for its internal communication and data definition. Storm
topology is simply Thrift Structs. Storm Nimbus that runs the topology in Apache Storm is a
Thrift service.

Apache Storm

14

Let us now see how to install Apache Storm framework on your machine. There are three major
steps here:

x Install Java on your system, if you don’t have it already.

x Install ZooKeeper framework.

x Install Apache Storm framework.

Step 1: Verifying Java Installation
Use the following command to check whether you have Java already installed on your system.

$ java -version

If Java is already there, then you would see its version number. Else, download the latest version
of JDK.

Step 1.1: Download JDK
Download the latest version of JDK by using the following link:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

The latest version is JDK 8u 60 and the file is “jdk-8u60-linux-x64.tar.gz”. Download the file on
your machine.

Step 1.2: Extract files
Generally files are being downloaded onto the downloads folder. Extract the tar setup using
the following commands.

$ cd /go/to/download/path

$ tar -zxf jdk-8u60-linux-x64.gz

Step 1.3: Move to opt directory
To make Java available to all users, move the extracted java content to “/usr/local/java” folder.

$ su

password: (type password of root user)

$ mkdir /opt/jdk

$ mv jdk-1.8.0_60 /opt/jdk/

6. Apache Storm – Installation

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Apache Storm

15

Step 1.4: Set path
To set path and JAVA_HOME variables, add the following commands to ~/.bashrc file.

export JAVA_HOME =/usr/jdk/jdk-1.8.0_60

export PATH=$PATH:$JAVA_HOME/bin

Now apply all the changes in to the current running system.

$ source ~/.bashrc

Step 1.5: Java Alternatives
Use the following command to change Java alternatives.

update-alternatives --install /usr/bin/java java /opt/jdk/jdk1.8.0_60/bin/java 100

Step 1.6
Now verify the Java installation using the verification command (java -version) explained in
Step 1.

Step 2: ZooKeeper Framework Installation

Step 2.1: Download ZooKeeper
To install ZooKeeper framework on your machine, visit the following link and download the latest
version of ZooKeeper.

http://zookeeper.apache.org/releases.html

As of now, the latest version of ZooKeeper is 3.4.6 (ZooKeeper-3.4.6.tar.gz).

Step 2.2: Extract tar file
Extract the tar file using the following commands:

$ cd opt/

$ tar -zxf zookeeper-3.4.6.tar.gz

$ cd zookeeper-3.4.6

$ mkdir data

Step 2.3: Create configuration file
Open configuration file named “conf/zoo.cfg” using the command "vi conf/zoo.cfg" and setting
all the following parameters as starting point.

http://zookeeper.apache.org/releases.html

Apache Storm

16

$ vi conf/zoo.cfg

tickTime=2000

dataDir=/path/to/zookeeper/data

clientPort=2181

initLimit=5

syncLimit=2

Once the configuration file has been saved successfully, you can start the ZooKeeper server.

Step 2.4: Start ZooKeeper Server
Use the following command to start the ZooKeeper server.

$ bin/zkServer.sh start

After executing this command, you will get a response as follows:

$ JMX enabled by default

$ Using config: /Users/../zookeeper-3.4.6/bin/../conf/zoo.cfg

$ Starting zookeeper ... STARTED

Step 2.5: Start CLI
Use the following command to start the CLI.

$ bin/zkCli.sh

After executing the above command, you will be connected to the ZooKeeper server and get the
following response.

Connecting to localhost:2181

................

................

................

Welcome to ZooKeeper!

................

................

WATCHER::

WatchedEvent state:SyncConnected type: None path:null

[zk: localhost:2181(CONNECTED) 0]

Apache Storm

17

Step 2.6: Stop ZooKeeper Server
After connecting the server and performing all the operations, you can stop the ZooKeeper server
by using the following command.

bin/zkServer.sh stop

You have successfully installed Java and ZooKeeper on your machine. Let us now see the steps
to install Apache Storm framework.

Step 3: Apache Storm Framework Installation

Step 3.1 Download Storm
To install Storm framework on your machine, visit the following link and download the latest
version of Storm.

http://storm.apache.org/downloads.html

As of now, the latest version of Storm is “apache-storm-0.9.5.tar.gz”.

Step 3.2: Extract tar file
Extract the tar file using the following commands:

$ cd opt/

$ tar -zxf apache-storm-0.9.5.tar.gz

$ cd apache-storm-0.9.5

$ mkdir data

Step 3.3: Open configuration file
The current release of Storm contains a file at “conf/storm.yaml” that configures Storm
daemons. Add the following information to that file.

$ vi conf/storm.yaml

storm.zookeeper.servers:

 - "localhost"

storm.local.dir: “/path/to/storm/data(any path)”

nimbus.host: "localhost"

supervisor.slots.ports:

 - 6700

 - 6701

http://storm.apache.org/downloads.html

Apache Storm

18

 - 6702

 - 6703

After applying all the changes, save and return to terminal.

Step 3.4: Start the Nimbus

$ bin/storm nimbus

Step 3.5: Start the Supervisor

$ bin/storm supervisor

Step 3.6 Start the UI

$ bin/storm ui

After starting Storm user interface application, type the URL http://localhost:8080 in your
favorite browser and you could see Storm cluster information and its running topology. The page
should look similar to the following screenshot.

Apache Storm

19

We have gone through the core technical details of the Apache Storm and now it is time to code
some simple scenarios.

Scenario – Mobile Call Log Analyzer
Mobile call and its duration will be given as input to Apache Storm and the Storm will process
and group the call between the same caller and receiver and their total number of calls.

Spout Creation
Spout is a component which is used for data generation. Basically, a spout will implement an
IRichSpout interface. “IRichSpout” interface has the following important methods:

x open – Provides the spout with an environment to execute. The executors will run this
method to initialize the spout.

x nextTuple – Emits the generated data through the collector.

x close – This method is called when a spout is going to shutdown.

x declareOutputFields – Declares the output schema of the tuple.

x ack – Acknowledges that a specific tuple is processed.

x fail – Specifies that a specific tuple is not processed and not to be reprocessed.

Open
The signature of the open method is as follows:

open(Map conf, TopologyContext context, SpoutOutputCollector collector)

x conf – Provides storm configuration for this spout.

x context – Provides complete information about the spout place within the topology, its

task id, input and output information.

x collector – Enables us to emit the tuple that will be processed by the bolts.

nextTuple
The signature of the nextTuple method is as follows:

nextTuple()

nextTuple() is called periodically from the same loop as the ack() and fail() methods. It must
release control of the thread when there is no work to do, so that the other methods have a

7. Apache Storm – Working Example

Apache Storm

20

chance to be called. So the first line of nextTuple checks to see if processing has finished. If so,
it should sleep for at least one millisecond to reduce load on the processor before returning.

close
The signature of the close method is as follows:

close()

declareOutputFields
The signature of the declareOutputFields method is as follows:

declareOutputFields(OutputFieldsDeclarer declarer)

declarer – It is used to declare output stream ids, output fields, etc.

This method is used to specify the output schema of the tuple.

ack
The signature of the ack method is as follows:

ack(Object msgId)

This method acknowledges that a specific tuple has been processed.

fail
The signature of the nextTuple method is as follows:

ack(Object msgId)

This method informs that a specific tuple has not been fully processed. Storm will reprocess the
specific tuple.

FakeCallLogReaderSpout
In our scenario, we need to collect the call log details. The information of the call log contains

x caller number

x receiver number

x duration

Since, we don’t have real-time information of call logs, we will generate fake call logs. The fake
information will be created using Random class. The complete program code is given below.

Apache Storm

21

Coding: FakeCallLogReaderSpout.java

import java.util.*;

//import storm tuple packages

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

//import Spout interface packages

import backtype.storm.topology.IRichSpout;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.spout.SpoutOutputCollector;

import backtype.storm.task.TopologyContext;

//Create a class FakeLogReaderSpout which implement IRichSpout interface to access functionalities

public class FakeCallLogReaderSpout implements IRichSpout {

 //Create instance for SpoutOutputCollector which passes tuples to bolt.

 private SpoutOutputCollector collector;

 private boolean completed = false;

 //Create instance for TopologyContext which contains topology data.

 private TopologyContext context;

 //Create instance for Random class.

 private Random randomGenerator = new Random();

 private Integer idx = 0;

 @Override

 public void open(Map conf, TopologyContext context, SpoutOutputCollector collector)
{

 this.context = context;

 this.collector = collector;

 }

 @Override

 public void nextTuple() {

 if(this.idx <= 1000) {

 List<String> mobileNumbers = new ArrayList<String>();

Apache Storm

22

 mobileNumbers.add("1234123401");

 mobileNumbers.add("1234123402");

 mobileNumbers.add("1234123403");

 mobileNumbers.add("1234123404");

 Integer localIdx = 0;

 while(localIdx++ < 100 && this.idx++ < 1000) {

 String fromMobileNumber = mobileNumbers.get(randomGenerator.nextInt(4));

 String toMobileNumber = mobileNumbers.get(randomGenerator.nextInt(4));

 while(fromMobileNumber == toMobileNumber) {

 toMobileNumber = mobileNumbers.get(randomGenerator.nextInt(4));

 }

 Integer duration = randomGenerator.nextInt(60);

 this.collector.emit(new Values(fromMobileNumber, toMobileNumber, duration));

 }

 }

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("from", "to", "duration"));

 }

 //Override all the interface methods

 @Override

 public void close() {

 }

 public boolean isDistributed() {

 return false;

 }

 @Override

 public void activate() {

 }

 @Override

Apache Storm

23

 public void deactivate() {

 }

 @Override

 public void ack(Object msgId) {

 }

 @Override

 public void fail(Object msgId) {

 }

 @Override

 public Map<String, Object> getComponentConfiguration() {

 return null;

 }

}

Bolt Creation
Bolt is a component that takes tuples as input, processes the tuple, and produces new tuples as
output. Bolts will implement IRichBolt interface. In this program, two bolt classes
CallLogCreatorBolt and CallLogCounterBolt are used to perform the operations.

IRichBolt interface has the following methods:

x prepare – Provides the bolt with an environment to execute. The executors will run this
method to initialize the spout.

x execute – Process a single tuple of input.

x cleanup – Called when a bolt is going to shutdown.

x declareOutputFields – Declares the output schema of the tuple.

Prepare
The signature of the prepare method is as follows:

prepare(Map conf, TopologyContext context, OutputCollector collector)

x conf – Provides Storm configuration for this bolt.

x context – Provides complete information about the bolt place within the topology, its
task id, input and output information, etc.

x collector – Enables us to emit the processed tuple.

Apache Storm

24

execute
The signature of the execute method is as follows:

execute(Tuple tuple)

Here tuple is the input tuple to be processed.

The execute method processes a single tuple at a time. The tuple data can be accessed by
getValue method of Tuple class. It is not necessary to process the input tuple immediately.
Multiple tuple can be processed and output as a single output tuple. The processed tuple can be
emitted by using the OutputCollector class.

cleanup
The signature of the cleanup method is as follows:

cleanup()

declareOutputFields
The signature of the declareOutputFields method is as follows:

declareOutputFields(OutputFieldsDeclarer declarer)

Here the parameter declarer is used to declare output stream ids, output fields, etc.

This method is used to specify the output schema of the tuple.

Call log Creator Bolt
Call log creator bolt receives the call log tuple. The call log tuple has caller number, receiver
number, and call duration. This bolt simply creates a new value by combining the caller number
and the receiver number. The format of the new value is "Caller number – Receiver number"
and it is named as new field, "call". The complete code is given below.

Coding: CallLogCreatorBolt.java

//import util packages

import java.util.HashMap;

import java.util.Map;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import backtype.storm.task.OutputCollector;

import backtype.storm.task.TopologyContext;

//import Storm IRichBolt package

Apache Storm

25

import backtype.storm.topology.IRichBolt;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.tuple.Tuple;

//Create a class CallLogCreatorBolt which implement IRichBolt interface

public class CallLogCreatorBolt implements IRichBolt {

 //Create instance for OutputCollector which collects and emits tuples to produce output

 private OutputCollector collector;

 @Override

 public void prepare(Map conf, TopologyContext context, OutputCollector collector) {

 this.collector = collector;

 }

 @Override

 public void execute(Tuple tuple) {

 String from = tuple.getString(0);

 String to = tuple.getString(1);

 Integer duration = tuple.getInteger(2);

 collector.emit(new Values(from + " - " + to, duration));

 }

 @Override

 public void cleanup() {

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("call", "duration"));

 }

 @Override

 public Map<String, Object> getComponentConfiguration() {

 return null;

Apache Storm

26

 }

}

Call log Counter Bolt
Call log counter bolt receives call and its duration as a tuple. This bolt initializes a dictionary
(Map) object in the prepare method. In execute method, it checks the tuple and creates a new
entry in the dictionary object for every new “call” value in the tuple and sets a value 1 in the
dictionary object. For the already available entry in the dictionary, it just increment its value. In
simple terms, this bolt saves the call and its count in the dictionary object. Instead of saving the
call and its count in the dictionary, we can also save it to a datasource. The complete program
code is as follows:

Coding:CallLogCounterBolt.java

import java.util.HashMap;

import java.util.Map;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import backtype.storm.task.OutputCollector;

import backtype.storm.task.TopologyContext;

import backtype.storm.topology.IRichBolt;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.tuple.Tuple;

public class CallLogCounterBolt implements IRichBolt {

 Map<String, Integer> counterMap;

 private OutputCollector collector;

 @Override

 public void prepare(Map conf, TopologyContext context, OutputCollector collector) {

 this.counterMap = new HashMap<String, Integer>();

 this.collector = collector;

 }

 @Override

 public void execute(Tuple tuple) {

 String call = tuple.getString(0);

 Integer duration = tuple.getInteger(1);

Apache Storm

27

 if(!counterMap.containsKey(call)){

 counterMap.put(call, 1);

 }else{

 Integer c = counterMap.get(call) + 1;

 counterMap.put(call, c);

 }

 collector.ack(tuple);

 }

 @Override

 public void cleanup() {

 for(Map.Entry<String, Integer> entry:counterMap.entrySet()){

 System.out.println(entry.getKey()+" : " + entry.getValue());

 }

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("call"));

 }

 @Override

 public Map<String, Object> getComponentConfiguration() {

 return null;

 }

}

Creating Topology
The Storm topology is basically a Thrift structure. TopologyBuilder class provides simple and
easy methods to create complex topologies. The TopologyBuilder class has methods to set spout
(setSpout) and to set bolt (setBolt). Finally, TopologyBuilder has createTopology to create
topology. Use the following code snippet to create a topology:

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("call-log-reader-spout", new FakeCallLogReaderSpout());

builder.setBolt("call-log-creator-bolt", new CallLogCreatorBolt())

Apache Storm

28

 .shuffleGrouping("call-log-reader-spout");

builder.setBolt("call-log-counter-bolt", new CallLogCounterBolt())

 .fieldsGrouping("call-log-creator-bolt", new Fields("call"));

shuffleGrouping and fieldsGrouping methods help to set stream grouping for spout and bolts.

Local Cluster
For development purpose, we can create a local cluster using "LocalCluster" object and then
submit the topology using "submitTopology" method of "LocalCluster" class. One of the
arguments for "submitTopology" is an instance of "Config" class. The "Config" class is used to
set configuration options before submitting the topology. This configuration option will be
merged with the cluster configuration at run time and sent to all task (spout and bolt) with the
prepare method. Once topology is submitted to the cluster, we will wait 10 seconds for the
cluster to compute the submitted topology and then shutdown the cluster using “shutdown”
method of "LocalCluster". The complete program code is as follows:

Coding: LogAnalyserStorm.java

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

//import storm configuration packages

import backtype.storm.Config;

import backtype.storm.LocalCluster;

import backtype.storm.topology.TopologyBuilder;

//Create main class LogAnalyserStorm submit topology.

public class LogAnalyserStorm {

 public static void main(String[] args) throws Exception{

 //Create Config instance for cluster configuration

 Config config = new Config();

 config.setDebug(true);

 //

 TopologyBuilder builder = new TopologyBuilder();

Apache Storm

29

 builder.setSpout("call-log-reader-spout", new FakeCallLogReaderSpout());

 builder.setBolt("call-log-creator-bolt", new CallLogCreatorBolt())

 .shuffleGrouping("call-log-reader-spout");

 builder.setBolt("call-log-counter-bolt", new CallLogCounterBolt())

 .fieldsGrouping("call-log-creator-bolt", new Fields("call"));

 LocalCluster cluster = new LocalCluster();

 cluster.submitTopology("LogAnalyserStorm", config, builder.createTopology());

 Thread.sleep(10000);

 //Stop the topology

 cluster.shutdown();

 }

}

Building and Running the Application
The complete application has four Java codes. They are:

x FakeCallLogReaderSpout.java

x CallLogCreaterBolt.java

x CallLogCounterBolt.java

x LogAnalyerStorm.java

The application can be built using the following command:

 javac -cp “/path/to/storm/apache-storm-0.9.5/lib/*” *.java

The application can be run using the following command:

java -cp “/path/to/storm/apache-storm-0.9.5/lib/*”:. LogAnalyserStorm

Output
Once the application is started, it will output the complete details about the cluster startup
process, spout and bolt processing, and finally, the cluster shutdown process. In
"CallLogCounterBolt", we have printed the call and its count details. This information will be
displayed on the console as follows:

Apache Storm

30

1234123402 - 1234123401 : 78

1234123402 - 1234123404 : 88

1234123402 - 1234123403 : 105

1234123401 - 1234123404 : 74

1234123401 - 1234123403 : 81

1234123401 - 1234123402 : 81

1234123403 - 1234123404 : 86

1234123404 - 1234123401 : 63

1234123404 - 1234123402 : 82

1234123403 - 1234123402 : 83

1234123404 - 1234123403 : 86

1234123403 - 1234123401 : 93

Non-JVM languages
Storm topologies are implemented by Thrift interfaces which makes it easy to submit topologies
in any language. Storm supports Ruby, Python and many other languages. Let’s take a look at
python binding.

Python Binding
Python is a general-purpose interpreted, interactive, object-oriented, and high-level
programming language. Storm supports Python to implement its topology. Python supports
emitting, anchoring, acking, and logging operations.

As you know, bolts can be defined in any language. Bolts written in another language are
executed as sub-processes, and Storm communicates with those sub-processes with JSON
messages over stdin/stdout. First take a sample bolt WordCount that supports python binding.

public static class WordCount implements IRichBolt {

 public WordSplit() {

 super("python", "splitword.py");

 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("word"));

 }

}

Here the class WordCount implements the IRichBolt interface and running with python
implementation specified super method argument "splitword.py". Now create a python
implementation named "splitword.py".

Apache Storm

31

import storm

 class WordCountBolt(storm.BasicBolt):

 def process(self, tup):

 words = tup.values[0].split(" ")

 for word in words:

 storm.emit([word])

WordCountBolt().run()

This is the sample implementation for Python that counts the words in a given sentence. Similarly
you can bind with other supporting languages as well.

Apache Storm

32

Trident is an extension of Storm. Like Storm, Trident was also developed by Twitter. The main
reason behind developing Trident is to provide a high-level abstraction on top of Storm along
with stateful stream processing and low latency distributed querying.

Trident uses spout and bolt, but these low-level components are auto-generated by Trident
before execution. Trident has functions, filters, joins, grouping, and aggregation.

Trident processes streams as a series of batches which are referred as transactions. Generally
the size of those small batches will be on the order of thousands or millions of tuples, depending
on the input stream. This way, Trident is different from Storm, which performs tuple-by-tuple
processing.

Batch processing concept is very similar to database transactions. Every transaction is assigned
a transaction ID. The transaction is considered successful, once all its processing complete.
However, a failure in processing one of the transaction's tuples will cause the entire transaction
to be retransmitted. For each batch, Trident will call beginCommit at the beginning of the
transaction, and commit at the end of it.

Trident Topology
Trident API exposes an easy option to create Trident topology using “TridentTopology” class.
Basically, Trident topology receives input stream from spout and do ordered sequence of
operation (filter, aggregation, grouping, etc.,) on the stream. Storm Tuple is replaced by Trident
Tuple and Bolts are replaced by operations. A simple Trident topology can be created as follow

TridentTopology topology = new TridentTopology();

Trident Tuples
Trident tuple is a named list of values. The TridentTuple interface is the data model of a Trident
topology. The TridentTuple interface is the basic unit of data that can be processed by a Trident
topology.

Trident Spout
Trident spout is similar to Storm spout, with additional options to use the features of Trident.
Actually, we can still use the IRichSpout, which we have used in Storm topology, but it will be
non-transactional in nature and we won’t be able to use the advantages provided by Trident.

The basic spout having all the functionality to use the features of Trident is "ITridentSpout". It
supports both transactional and opaque transactional semantics. The other spouts are
IBatchSpout, IPartitionedTridentSpout, and IOpaquePartitionedTridentSpout.

In addition to these generic spouts, Trident has many sample implementation of trident spout.
One of them is FeederBatchSpout spout, which we can use to send named list of trident tuples
easily without worrying about batch processing, parallelism, etc.

8. Apache Storm – Trident

Apache Storm

33

FeederBatchSpout creation and data feeding can be done as shown below:

TridentTopology topology = new TridentTopology();

FeederBatchSpout testSpout = new FeederBatchSpout(

 ImmutableList.of("fromMobileNumber", "toMobileNumber", “duration”));

topology.newStream("fixed-batch-spout", testSpout)

testSpout.feed(ImmutableList.of(new Values("1234123401", "1234123402", 20)));

Trident Operations
Trident relies on the “Trident Operation” to process the input stream of trident tuples. Trident
API has a number of in-built operations to handle simple-to-complex stream processing. These
operations range from simple validation to complex grouping and aggregation of trident tuples.
Let us go through the most important and frequently used operations.

Filter
Filter is an object used to perform the task of input validation. A Trident filter gets a subset of
trident tuple fields as input and returns either true or false depending on whether certain
conditions are satisfied or not. If true is returned, then the tuple is kept in the output stream;
otherwise, the tuple is removed from the stream. Filter will basically inherit from the BaseFilter
class and implement the isKeep method. Here is a sample implementation of filter operation:

public class MyFilter extends BaseFilter {

 public boolean isKeep(TridentTuple tuple) {

 return tuple.getInteger(1) % 2 == 0;

 }

}

input

[1, 2]

[1, 3]

[1, 4]

output

[1, 2]

[1, 4]

Apache Storm

34

Filter function can be called in the topology using “each” method. “Fields” class can be used to
specify the input (subset of trident tuple). The sample code is as follows:

TridentTopology topology = new TridentTopology();

topology.newStream("spout", spout)

 .each(new Fields("a", "b"), new MyFilter())

Function
Function is an object used to perform a simple operation on a single trident tuple. It takes a
subset of trident tuple fields and emits zero or more new trident tuple fields.

Function basically inherits from the BaseFunction class and implements the execute method.
A sample implementation is given below:

public class MyFunction extends BaseFunction {

 public void execute(TridentTuple tuple, TridentCollector collector) {

 int a = tuple.getInteger(0);

 int b = tuple.getInteger(1);

 collector.emit(new Values(a + b));

 }

}

input

[1, 2]

[1, 3]

[1, 4]

output

[1, 2, 3]

[1, 3, 4]

[1, 4, 5]

Apache Storm

35

Just like Filter operation, Function operation can be called in a topology using the each method.
The sample code is as follows:

TridentTopology topology = new TridentTopology();

topology.newStream("spout", spout)

 .each(new Fields(“a, b"), new MyFunction(), new Fields(“d")));

Aggregation
Aggregation is an object used to perform aggregation operations on an input batch or partition
or stream. Trident has three types of aggregation. They are as follows:

x aggregate: Aggregates each batch of trident tuple in isolation. During the aggregate
process, the tuples are initially repartitioned using the global grouping to combine all
partitions of the same batch into a single partition.

x partitionAggregate: Aggregates each partition instead of the entire batch of trident
tuple. The output of the partition aggregate completely replaces the input tuple. The
output of the partition aggregate contains a single field tuple.

x persistentaggregate: Aggregates on all trident tuple across all batch and stores the
result in either memory or database

TridentTopology topology = new TridentTopology();

// aggregate operation

topology.newStream("spout", spout)

 .each(new Fields(“a, b"), new MyFunction(), new Fields(“d”))

 .aggregate(new Count(), new Fields(“count”))

// partitionAggregate operation

topology.newStream("spout", spout)

 .each(new Fields(“a, b"), new MyFunction(), new Fields(“d”))

 .partitionAggregate(new Count(), new Fields(“count"))

// persistentAggregate - saving the count to memory

topology.newStream("spout", spout)

 .each(new Fields(“a, b"), new MyFunction(), new Fields(“d”))

 .persistentAggregate(new MemoryMapState.Factory(), new Count(), new
Fields("count"));

Aggregation operation can be created using either CombinerAggregator, ReducerAggregator, or
generic Aggregator interface. The "count” aggregator used in the above example is one of the
build-in aggregators. It is implemented using “CombinerAggregator”. The implementation is as
follows:

Apache Storm

36

public class Count implements CombinerAggregator<Long> {

 @Override

 public Long init(TridentTuple tuple) {

 return 1L;

 }

 @Override

 public Long combine(Long val1, Long val2) {

 return val1 + val2;

 }

 @Override

 public Long zero() {

 return 0L;

 }

}

Grouping
Grouping operation is an inbuilt operation and can be called by the groupBy method. The
groupBy method repartitions the stream by doing a partitionBy on the specified fields, and then
within each partition, it groups tuples together whose group fields are equal. Normally, we use
“groupBy” along with “persistentAggregate” to get the grouped aggregation. The sample code is
as follows:

TridentTopology topology = new TridentTopology();

// persistentAggregate - saving the count to memory

topology.newStream("spout", spout)

 .each(new Fields(“a, b"), new MyFunction(), new Fields(“d”))

 .groupBy(new Fields(“d”)

 .persistentAggregate(new MemoryMapState.Factory(), new Count(), new
Fields("count"));

Merging and Joining
Merging and joining can be done by using “merge” and “join” method respectively. Merging
combines one or more streams. Joining is similar to merging, except the fact that joining uses
trident tuple field from both sides to check and join two streams. Moreover, joining will work
under batch level only. The sample code is as follows:

Apache Storm

37

TridentTopology topology = new TridentTopology();

topology.merge(stream1, stream2, stream3);

topology.join(stream1, new Fields("key"), stream2, new Fields("x"), new Fields("key",
"a", "b", "c"));

State Maintenance
Trident provides a mechanism for state maintenance. State information can be stored in the
topology itself, otherwise you can store it in a separate database as well. The reason is to
maintain a state that if any tuple fails during processing, then the failed tuple is retried. This
creates a problem while updating the state because you are not sure whether the state of this
tuple has been updated previously or not. If the tuple has failed before updating the state, then
retrying the tuple will make the state stable. However, if the tuple has failed after updating the
state, then retrying the same tuple will again increase the count in the database and make the
state unstable. One needs to perform the following steps to ensure a message is processed only
once:

x Process the tuples in small batches.

x Assign a unique ID to each batch. If the batch is retried, it is given the same unique ID.

x The state updates are ordered among batches. For example, the state update of the
second batch will not be possible until the state update for the first batch has completed.

Distributed RPC
Distributed RPC is used to query and retrieve the result from the Trident topology. Storm has an
inbuilt distributed RPC server. The distributed RPC server receives the RPC request from the
client and passes it to the topology. The topology processes the request and sends the result to
the distributed RPC server, which is redirected by the distributed RPC server to the client.
Trident's distributed RPC query executes like a normal RPC query, except for the fact that these
queries are run in parallel.

When to Use Trident?
As in many use-cases, if the requirement is to process a query only once, we can achieve it by
writing a topology in Trident. On the other hand, it will be difficult to achieve exactly once
processing in the case of Storm. Hence Trident will be useful for those use-cases where you
require exactly once processing. Trident is not for all use cases, especially high-performance
use-cases because it adds complexity to Storm and manages the state.

Working Example of Trident
We are going to convert our call log analyzer application worked out in the previous section to
Trident framework. Trident application will be relatively easy as compared to plain storm, thanks
to its high-level API. Storm will be basically required to perform any one of Function, Filter,
Aggregate, GroupBy, Join and Merge operations in Trident. Finally we will start the DRPC Server
using the LocalDRPC class and search some keyword using the execute method of LocalDRPC
class.

Apache Storm

38

Formatting the call information
The purpose of the FormatCall class is to format the call information comprising “Caller number”
and “Receiver number”. The complete program code is as follows:

Coding: FormatCall.java

import backtype.storm.tuple.Values;

import storm.trident.operation.BaseFunction;

import storm.trident.operation.TridentCollector;

import storm.trident.tuple.TridentTuple;

public class FormatCall extends BaseFunction {

 @Override

 public void execute(TridentTuple tuple, TridentCollector collector) {

 String fromMobileNumber = tuple.getString(0);

 String toMobileNumber = tuple.getString(1);

 collector.emit(new Values(fromMobileNumber + " - " + toMobileNumber));

 }

}

CSVSplit
The purpose of the CSVSplit class is to split the input string based on “comma (,)” and emit
every word in the string. This function is used to parse the input argument of distributed
querying. The complete code is as follows:

Coding: CSVSplit.java

import backtype.storm.tuple.Values;

import storm.trident.operation.BaseFunction;

import storm.trident.operation.TridentCollector;

import storm.trident.tuple.TridentTuple;

public class CSVSplit extends BaseFunction {

 @Override

 public void execute(TridentTuple tuple, TridentCollector collector) {

 for(String word: tuple.getString(0).split(",")) {

 if(word.length() > 0) {

Apache Storm

39

 collector.emit(new Values(word));

 }

 }

 }

}

Log Analyzer
This is the main application. Initially, the application will initialize the TridentTopology and feed
caller information using FeederBatchSpout. Trident topology stream can be created using the
newStream method of TridentTopology class. Similarly, Trident topology DRPC stream can be
created using the newDRCPStream method of TridentTopology class. A simple DRCP server
can be created using LocalDRPC class. LocalDRPC has execute method to search some keyword.
The complete code is given below.

Coding: LogAnalyserTrident.java

import java.util.*;

import backtype.storm.Config;

import backtype.storm.LocalCluster;

import backtype.storm.LocalDRPC;

import backtype.storm.utils.DRPCClient;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import storm.trident.TridentState;

import storm.trident.TridentTopology;

import storm.trident.tuple.TridentTuple;

import storm.trident.operation.builtin.FilterNull;

import storm.trident.operation.builtin.Count;

import storm.trident.operation.builtin.Sum;

import storm.trident.operation.builtin.MapGet;

import storm.trident.operation.builtin.Debug;

import storm.trident.operation.BaseFilter;

import storm.trident.testing.FixedBatchSpout;

import storm.trident.testing.FeederBatchSpout;

import storm.trident.testing.Split;

import storm.trident.testing.MemoryMapState;

Apache Storm

40

import com.google.common.collect.ImmutableList;

public class LogAnalyserTrident {

 public static void main(String[] args) throws Exception {

 System.out.println("Log Analyser Trident");

 TridentTopology topology = new TridentTopology();

 FeederBatchSpout testSpout = new
FeederBatchSpout(ImmutableList.of("fromMobileNumber", "toMobileNumber", "duration"));

 TridentState callCounts =

 topology

 .newStream("fixed-batch-spout", testSpout)

 .each(new Fields("fromMobileNumber", "toMobileNumber"), new FormatCall(), new
Fields("call"))

 .groupBy(new Fields("call"))

 .persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"));

 LocalDRPC drpc = new LocalDRPC();

 topology.newDRPCStream("call_count", drpc)

 .stateQuery(callCounts, new Fields("args"), new MapGet(), new Fields("count"));

 topology.newDRPCStream("multiple_call_count", drpc)

 .each(new Fields("args"), new CSVSplit(), new Fields("call"))

 .groupBy(new Fields("call"))

 .stateQuery(callCounts, new Fields("call"), new MapGet(), new Fields("count"))

 .each(new Fields("call", "count"), new Debug())

 .each(new Fields("count"), new FilterNull())

 .aggregate(new Fields("count"), new Sum(), new Fields("sum"));

 Config conf = new Config();

 LocalCluster cluster = new LocalCluster();

 cluster.submitTopology("trident", conf, topology.build());

Apache Storm

41

 Random randomGenerator = new Random();

 int idx = 0;

 while(idx < 10) {

 testSpout.feed(

 ImmutableList.of(new Values("1234123401", "1234123402",
randomGenerator.nextInt(60))));

 testSpout.feed(

 ImmutableList.of(new Values("1234123401", "1234123403",
randomGenerator.nextInt(60))));

 testSpout.feed(

 ImmutableList.of(new Values("1234123401", "1234123404",
randomGenerator.nextInt(60))));

 testSpout.feed(

 ImmutableList.of(new Values("1234123402", "1234123403",
randomGenerator.nextInt(60))));

 idx = idx + 1;

 }

 System.out.println("DRPC : Query starts");

 System.out.println(drpc.execute("call_count","1234123401 - 1234123402"));

 System.out.println(drpc.execute("multiple_call_count", "1234123401 -
1234123402,1234123401 - 1234123403"));

 System.out.println("DRPC : Query ends");

 cluster.shutdown();

 drpc.shutdown();

 // DRPCClient client = new DRPCClient("drpc.server.location", 3772);

 }

}

Building and Running the Application
The complete application has three Java codes. They are as follows:

Apache Storm

42

x FormatCall.java

x CSVSplit.java

x LogAnalyerTrident.java

The application can be built by using the following command:

 javac -cp “/path/to/storm/apache-storm-0.9.5/lib/*” *.java

The application can be run by using the following command:

java -cp “/path/to/storm/apache-storm-0.9.5/lib/*”:. LogAnalyserTrident

Output
Once the application is started, the application will output the complete details about the cluster
startup process, operations processing, DRPC Server and client information, and finally, the
cluster shutdown process. This output will be displayed on the console as shown below.

DRPC : Query starts

[["1234123401 - 1234123402",10]]

DEBUG: [1234123401 - 1234123402, 10]

DEBUG: [1234123401 - 1234123403, 10]

[[20]]

DRPC : Query ends

Apache Storm

43

Here in this chapter, we will discuss a real-time application of Apache Storm. We will see how
Storm is used in Twitter.

Twitter
Twitter is an online social networking service that provides a platform to send and receive user
tweets. Registered users can read and post tweets, but unregistered users can only read tweets.
Hashtag is used to categorize tweets by keyword by appending # before the relevant keyword.
Now let us take a real-time scenario of finding the most used hashtag per topic.

Spout Creation
The purpose of spout is to get the tweets submitted by people as soon as possible. Twitter
provides “Twitter Streaming API”, a web service based tool to retrieve the tweets submitted by
people in real time. Twitter Streaming API can be accessed in any programming language.

twitter4j is an open source, unofficial Java library, which provides a Java based module to easily
access the Twitter Streaming API. twitter4j provides a listener-based framework to access the
tweets. To access the Twitter Streaming API, we need to sign in for Twitter developer account
and should get the following OAuth authentication details.

x Customerkey

x CustomerSecret

x AccessToken

x AccessTookenSecret

Storm provides a twitter spout, TwitterSampleSpout, in its starter kit. We will be using it to
retrieve the tweets. The spout needs OAuth authentication details and at least a keyword. The
spout will emit real-time tweets based on keywords. The complete program code is given below.

Coding: TwitterSampleSpout.java

import java.util.Map;

import java.util.concurrent.LinkedBlockingQueue;

import twitter4j.FilterQuery;

import twitter4j.StallWarning;

import twitter4j.Status;

import twitter4j.StatusDeletionNotice;

import twitter4j.StatusListener;

import twitter4j.TwitterStream;

import twitter4j.TwitterStreamFactory;

import twitter4j.auth.AccessToken;

9. Apache Storm in Twitter

Apache Storm

44

import twitter4j.conf.ConfigurationBuilder;

import backtype.storm.Config;

import backtype.storm.spout.SpoutOutputCollector;

import backtype.storm.task.TopologyContext;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.topology.base.BaseRichSpout;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import backtype.storm.utils.Utils;

@SuppressWarnings("serial")

public class TwitterSampleSpout extends BaseRichSpout {

 SpoutOutputCollector _collector;

 LinkedBlockingQueue<Status> queue = null;

 TwitterStream _twitterStream;

 String consumerKey;

 String consumerSecret;

 String accessToken;

 String accessTokenSecret;

 String[] keyWords;

 public TwitterSampleSpout(String consumerKey, String consumerSecret,

 String accessToken, String accessTokenSecret, String[] keyWords) {

 this.consumerKey = consumerKey;

 this.consumerSecret = consumerSecret;

 this.accessToken = accessToken;

 this.accessTokenSecret = accessTokenSecret;

 this.keyWords = keyWords;

 }

 public TwitterSampleSpout() {

 // TODO Auto-generated constructor stub

 }

 @Override

 public void open(Map conf, TopologyContext context,

Apache Storm

45

 SpoutOutputCollector collector) {

 queue = new LinkedBlockingQueue<Status>(1000);

 _collector = collector;

 StatusListener listener = new StatusListener() {

 @Override

 public void onStatus(Status status) {

 queue.offer(status);

 }

 @Override

 public void onDeletionNotice(StatusDeletionNotice sdn) {

 }

 @Override

 public void onTrackLimitationNotice(int i) {

 }

 @Override

 public void onScrubGeo(long l, long l1) {

 }

 @Override

 public void onException(Exception ex) {

 }

 @Override

 public void onStallWarning(StallWarning arg0) {

 // TODO Auto-generated method stub

 }

 };

 ConfigurationBuilder cb = new ConfigurationBuilder();

 cb.setDebugEnabled(true)

Apache Storm

46

 .setOAuthConsumerKey(consumerKey)

 .setOAuthConsumerSecret(consumerSecret)

 .setOAuthAccessToken(accessToken)

 .setOAuthAccessTokenSecret(accessTokenSecret);

 _twitterStream = new TwitterStreamFactory(cb.build()).getInstance();

 _twitterStream.addListener(listener);

 if (keyWords.length == 0) {

 _twitterStream.sample();

 }

 else {

 FilterQuery query = new FilterQuery().track(keyWords);

 _twitterStream.filter(query);

 }

 }

 @Override

 public void nextTuple() {

 Status ret = queue.poll();

 if (ret == null) {

 Utils.sleep(50);

 } else {

 _collector.emit(new Values(ret));

 }

 }

 @Override

 public void close() {

 _twitterStream.shutdown();

 }

Apache Storm

47

 @Override

 public Map<String, Object> getComponentConfiguration() {

 Config ret = new Config();

 ret.setMaxTaskParallelism(1);

 return ret;

 }

 @Override

 public void ack(Object id) {

 }

 @Override

 public void fail(Object id) {

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("tweet"));

 }

}

Hashtag Reader Bolt
The tweet emitted by spout will be forwarded to HashtagReaderBolt, which will process the
tweet and emit all the available hashtags. HashtagReaderBolt uses getHashTagEntities
method provided by twitter4j. getHashTagEntities reads the tweet and returns the list of
hashtag. The complete program code is as follows:

Coding: HashtagReaderBolt.java

import java.util.HashMap;

import java.util.Map;

import twitter4j.*;

import twitter4j.conf.*;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import backtype.storm.task.OutputCollector;

Apache Storm

48

import backtype.storm.task.TopologyContext;

import backtype.storm.topology.IRichBolt;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.tuple.Tuple;

public class HashtagReaderBolt implements IRichBolt {

 private OutputCollector collector;

 @Override

 public void prepare(Map conf, TopologyContext context, OutputCollector collector) {

 this.collector = collector;

 }

 @Override

 public void execute(Tuple tuple) {

 Status tweet = (Status) tuple.getValueByField("tweet");

 for(HashtagEntity hashtage : tweet.getHashtagEntities()) {

 System.out.println("Hashtag: " + hashtage.getText());

 this.collector.emit(new Values(hashtage.getText()));

 }

 }

 @Override

 public void cleanup() {

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("hashtag"));

 }

 @Override

 public Map<String, Object> getComponentConfiguration() {

 return null;

 }

}

Apache Storm

49

Hashtag Counter Bolt
The emitted hashtag will be forwarded to HashtagCounterBolt. This bolt will process all the
hashtags and save each and every hashtag and its count in memory using Java Map object. The
complete program code is given below.

Coding: HashtagCounterBolt.java

import java.util.HashMap;

import java.util.Map;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import backtype.storm.task.OutputCollector;

import backtype.storm.task.TopologyContext;

import backtype.storm.topology.IRichBolt;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.tuple.Tuple;

public class HashtagCounterBolt implements IRichBolt {

 Map<String, Integer> counterMap;

 private OutputCollector collector;

 @Override

 public void prepare(Map conf, TopologyContext context, OutputCollector collector) {

 this.counterMap = new HashMap<String, Integer>();

 this.collector = collector;

 }

 @Override

 public void execute(Tuple tuple) {

 String key = tuple.getString(0);

 if(!counterMap.containsKey(key)){

 counterMap.put(key, 1);

 }else{

 Integer c = counterMap.get(key) + 1;

 counterMap.put(key, c);

 }

Apache Storm

50

 collector.ack(tuple);

 }

 @Override

 public void cleanup() {

 for(Map.Entry<String, Integer> entry:counterMap.entrySet()){

 System.out.println("Result: " + entry.getKey()+" : " + entry.getValue());

 }

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("hashtag"));

 }

 @Override

 public Map<String, Object> getComponentConfiguration() {

 return null;

 }

}

Submitting a Topology
Submitting a topology is the main application. Twitter topology consists of
TwitterSampleSpout, HashtagReaderBolt, and HashtagCounterBolt. The following
program code shows how to submit a topology.

Coding: TwitterHashtagStorm.java

import java.util.*;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import backtype.storm.Config;

import backtype.storm.LocalCluster;

import backtype.storm.topology.TopologyBuilder;

public class TwitterHashtagStorm {

Apache Storm

51

 public static void main(String[] args) throws Exception{

 String consumerKey = args[0];

 String consumerSecret = args[1];

 String accessToken = args[2];

 String accessTokenSecret = args[3];

 String[] arguments = args.clone();

 String[] keyWords = Arrays.copyOfRange(arguments, 4, arguments.length);

 Config config = new Config();

 config.setDebug(true);

 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("twitter-spout", new TwitterSampleSpout(consumerKey,
consumerSecret,

 accessToken, accessTokenSecret, keyWords));

 builder.setBolt("twitter-hashtag-reader-bolt", new HashtagReaderBolt())

 .shuffleGrouping("twitter-spout");

 builder.setBolt("twitter-hashtag-counter-bolt", new HashtagCounterBolt())

 .fieldsGrouping("twitter-hashtag-reader-bolt", new Fields("hashtag"));

 LocalCluster cluster = new LocalCluster();

 cluster.submitTopology("TwitterHashtagStorm", config, builder.createTopology());

 Thread.sleep(10000);

 cluster.shutdown();

 }

}

Building and Running the Application
The complete application has four Java codes. They are as follows:

Apache Storm

52

x TwitterSampleSpout.java

x HashtagReaderBolt.java

x HashtagCounterBolt.java

x TwitterHashtagStorm.java

You can compile the application using the following command:

 javac -cp “/path/to/storm/apache-storm-0.9.5/lib/*”:”/path/to/twitter4j/lib/*” *.java

Execute the application using the following commands:

javac -cp “/path/to/storm/apache-storm-0.9.5/lib/*”:”/path/to/twitter4j/lib/*”:.
TwitterHashtagStorm <customerkey> <customersecret> <accesstoken> <accesstokensecret>
<keyword1> <keyword2> … <keywordN>

Output
The application will print the current available hashtag and its count. The output should be similar
to the following:

Result: jazztastic : 1

Result: foodie : 1

Result: Redskins : 1

Result: Recipe : 1

Result: cook : 1

Result: android : 1

Result: food : 2

Result: NoToxicHorseMeat : 1

Result: Purrs4Peace : 1

Result: livemusic : 1

Result: VIPremium : 1

Result: Frome : 1

Result: SundayRoast : 1

Result: Millennials : 1

Result: HealthWithKier : 1

Result: LPs30DaysofGratitude : 1

Result: cooking : 1

Result: gameinsight : 1

Result: Countryfile : 1

Result: androidgames : 1

Apache Storm

53

Yahoo! Finance is the Internet's leading business news and financial data website. It is a part of
Yahoo! and gives information about financial news, market statistics, international market data
and other information about financial resources that anyone can access.

If you are a registered Yahoo! user, then you can customize Yahoo! Finance to take advantage
of its certain offerings. Yahoo! Finance API is used to query financial data from Yahoo!

This API displays data that is delayed by 15-minutes from real time, and updates its database
every 1 minute, to access current stock-related information. Now let us take a real-time scenario
of a company and see how to raise an alert when its stock value goes below 100.

Spout Creation
The purpose of spout is to get the details of the company and emit the prices to bolts. You can
use the following program code to create a spout.

Coding: YahooFinanceSpout.java

import java.util.*;

import java.io.*;

import java.math.BigDecimal;

//import yahoofinace packages

import yahoofinance.YahooFinance;

import yahoofinance.Stock;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import backtype.storm.topology.IRichSpout;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.spout.SpoutOutputCollector;

import backtype.storm.task.TopologyContext;

public class YahooFinanceSpout implements IRichSpout {

 private SpoutOutputCollector collector;

 private boolean completed = false;

 private TopologyContext context;

10. Apache Storm in Yahoo! Finance

Apache Storm

54

 @Override

 public void open(Map conf, TopologyContext context, SpoutOutputCollector collector)
{

 this.context = context;

 this.collector = collector;

 }

 @Override

 public void nextTuple() {

 try {

 Stock stock = YahooFinance.get("INTC");

 BigDecimal price = stock.getQuote().getPrice();

 this.collector.emit(new Values("INTC", price.doubleValue()));

 stock = YahooFinance.get("GOOGL");

 price = stock.getQuote().getPrice();

 this.collector.emit(new Values("GOOGL", price.doubleValue()));

 stock = YahooFinance.get("AAPL");

 price = stock.getQuote().getPrice();

 this.collector.emit(new Values("AAPL", price.doubleValue()));

 } catch(Exception e) {

 }

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("company", "price"));

 }

 @Override

 public void close() {

 }

Apache Storm

55

 public boolean isDistributed() {

 return false;

 }

 @Override

 public void activate() {

 }

 @Override

 public void deactivate() {

 }

 @Override

 public void ack(Object msgId) {

 }

 @Override

 public void fail(Object msgId) {

 }

 @Override

 public Map<String, Object> getComponentConfiguration() {

 return null;

 }

}

Bolt Creation
Here the purpose of bolt is to process the given company’s prices when the prices fall below 100.
It uses Java Map object to set the cutoff price limit alert as true when the stock prices fall below
100; otherwise false. The complete program code is as follows:

Coding: PriceCutOffBolt.java

import java.util.HashMap;

import java.util.Map;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

Apache Storm

56

import backtype.storm.task.OutputCollector;

import backtype.storm.task.TopologyContext;

import backtype.storm.topology.IRichBolt;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.tuple.Tuple;

public class PriceCutOffBolt implements IRichBolt {

 Map<String, Integer> cutOffMap;

 Map<String, Boolean> resultMap;

 private OutputCollector collector;

 @Override

 public void prepare(Map conf, TopologyContext context, OutputCollector collector) {

 this.cutOffMap = new HashMap<String, Integer>();

 this.cutOffMap.put("INTC", 100);

 this.cutOffMap.put("AAPL", 100);

 this.cutOffMap.put("GOOGL", 100);

 this.resultMap = new HashMap<String, Boolean>();

 this.collector = collector;

 }

 @Override

 public void execute(Tuple tuple) {

 String company = tuple.getString(0);

 Double price = tuple.getDouble(1);

 if(this.cutOffMap.containsKey(company)){

 Integer cutOffPrice = this.cutOffMap.get(company);

 if(price < cutOffPrice) {

 this.resultMap.put(company, true);

 } else {

 this.resultMap.put(company, false);

 }

 }

Apache Storm

57

 collector.ack(tuple);

 }

 @Override

 public void cleanup() {

 for(Map.Entry<String, Boolean> entry:resultMap.entrySet()){

 System.out.println(entry.getKey()+" : " + entry.getValue());

 }

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("cut_off_price"));

 }

 @Override

 public Map<String, Object> getComponentConfiguration() {

 return null;

 }

}

Submitting a Topology
This is the main application where YahooFinanceSpout.java and PriceCutOffBolt.java are
connected together and produce a topology. The following program code shows how you can
submit a topology.

Coding: YahooFinanceStorm.java

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

import backtype.storm.Config;

import backtype.storm.LocalCluster;

import backtype.storm.topology.TopologyBuilder;

public class YahooFinanceStorm {

 public static void main(String[] args) throws Exception{

 Config config = new Config();

Apache Storm

58

 config.setDebug(true);

 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("yahoo-finance-spout", new YahooFinanceSpout());

 builder.setBolt("price-cutoff-bolt", new PriceCutOffBolt())

 .fieldsGrouping("yahoo-finance-spout", new Fields("company"));

 LocalCluster cluster = new LocalCluster();

 cluster.submitTopology("YahooFinanceStorm", config, builder.createTopology());

 Thread.sleep(10000);

 cluster.shutdown();

 }

}

Building and Running the Application
The complete application has three Java codes. They are as follows:

x YahooFinanceSpout.java

x PriceCutOffBolt.java

x YahooFinanceStorm.java

The application can be built using the following command:

javac -cp “/path/to/storm/apache-storm-0.9.5/lib/*”:”/path/to/yahoofinance/lib/*” *.java

The application can be run using the following command:

javac -cp “/path/to/storm/apache-storm-0.9.5/lib/*”:”/path/to/yahoofinance/lib/*”:.
YahooFinanceStorm

Output
The output will be similar to the following:

GOOGL : false

AAPL : false

INTC : true

Apache Storm

59

Apache Storm framework supports many of the today's best industrial applications. We will
provide a very brief overview of some of the most notable applications of Storm in this chapter.

Klout
Klout is an application that uses social media analytics to rank its users based on online social
influence through Klout Score, which is a numerical value between 1 and 100. Klout uses
Apache Storm’s inbuilt Trident abstraction to create complex topologies that stream data.

The Weather Channel
The Weather Channel uses Storm topologies to ingest weather data. It has tied up with Twitter
to enable weather-informed advertising on Twitter and mobile applications. OpenSignal is a
company that specializes in wireless coverage mapping. StormTag and WeatherSignal are
weather-based projects created by OpenSignal. StormTag is a Bluetooth weather station that
attaches to a keychain. The weather data collected by the device is sent to the WeatherSignal
app and OpenSignal servers.

Telecom Industry
Telecommunication providers process millions of phone calls per second. They perform forensics
on dropped calls and poor sound quality. Call detail records flow in at a rate of millions per
second and Apache Storm processes those in real-time and identifies any troubling patterns.
Storm analysis can be used to continuously improve call quality.

11. Apache Storm – Applications

