

ZooKeeper

i

About the Tutorial

ZooKeeper is a distributed co-ordination service to manage large set of hosts. Co-ordinating and

managing a service in a distributed environment is a complicated process. ZooKeeper solves this

issue with its simple architecture and API. ZooKeeper allows developers to focus on core

application logic without worrying about the distributed nature of the application.

The ZooKeeper framework was originally built at “Yahoo!” for accessing their applications in an

easy and robust manner. Later, Apache ZooKeeper became a standard for organized service

used by Hadoop, HBase, and other distributed frameworks. For example, Apache HBase uses

ZooKeeper to track the status of distributed data. This tutorial explains the basics of ZooKeeper,

how to install and deploy a ZooKeeper cluster in a distributed environment, and finally concludes

with a few examples using Java programming and sample applications.

Audience

This tutorial has been prepared for professionals aspiring to make a career in Big Data Analytics

using ZooKeeper framework. It will give you enough understanding on how to use ZooKeeper to

create distributed clusters.

Prerequisites

Before proceeding with this tutorial, you must have a good understanding of Java because the

ZooKeeper server runs on JVM, distributed process, and Linux environment.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.

Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any

contents or a part of contents of this e-book in any manner without written consent of the

publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.

provides no guarantee regarding the accuracy, timeliness or completeness of our website or its

contents including this tutorial. If you discover any errors on our website or in this tutorial,

please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ZooKeeper

ii

Table of Contents

About the Tutorial ... i

Audience.. i

Prerequisites ... i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. ZOOKEEPER – OVERVIEW .. 1

Distributed Application ... 1

What is Apache ZooKeeper Meant For? ... 2

Benefits of ZooKeeper .. 3

2. ZOOKEEPER – FUNDAMENTALS .. 4

Architecture of ZooKeeper ... 4

Hierarchical Namespace ... 5

Sessions ... 7

Watches .. 7

3. ZOOKEEPER – WORKFLOW .. 8

Nodes in a ZooKeeper Ensemble .. 8

4. ZOOKEEPER – LEADER ELECTION .. 10

5. ZOOKEEPER – INSTALLATION ... 11

Step 1: Verifying Java Installation ... 11

Step 2: ZooKeeper Framework Installation .. 12

6. ZOOKEEPER – CLI .. 15

Create Znodes .. 15

Get Data .. 16

ZooKeeper

iii

Watch .. 18

Set Data .. 19

Create Children / Sub-znode .. 20

List Children ... 20

Check Status .. 21

Remove a Znode .. 22

7. ZOOKEEPER – API .. 23

Basics of ZooKeeper API .. 23

Java Binding .. 23

Connect to the ZooKeeper Ensemble ... 24

Create a Znode ... 26

Exists – Check the Existence of a Znode .. 28

getData Method .. 29

setData Method .. 32

getChildren Method ... 34

Delete a Znode ... 36

8. ZOOKEEPER – APPLICATIONS ... 38

Yahoo! ... 38

Apache Hadoop ... 38

Apache HBase ... 38

Apache Solr .. 39

ZooKeeper

1

ZooKeeper is a distributed co-ordination service to manage large set of hosts. Co-ordinating and

managing a service in a distributed environment is a complicated process. ZooKeeper solves this

issue with its simple architecture and API. ZooKeeper allows developers to focus on core

application logic without worrying about the distributed nature of the application.

The ZooKeeper framework was originally built at “Yahoo!” for accessing their applications in an

easy and robust manner. Later, Apache ZooKeeper became a standard for organized service

used by Hadoop, HBase, and other distributed frameworks. For example, Apache HBase uses

ZooKeeper to track the status of distributed data.

Before moving further, it is important that we know a thing or two about distributed applications.

So, let us start the discussion with a quick overview of distributed applications.

Distributed Application

A distributed application can run on multiple systems in a network at a given time

(simultaneously) by coordinating among themselves to complete a particular task in a fast and

efficient manner. Normally, complex and time-consuming tasks, which will take hours to

complete by a non-distributed application (running in a single system) can be done in minutes

by a distributed application by using computing capabilities of all the system involved.

The time to complete the task can be further reduced by configuring the distributed application

to run on more systems. A group of systems in which a distributed application is running is called

a Cluster and each machine running in a cluster is called a Node.

A distributed application has two parts, Server and Client application. Server applications are

actually distributed and have a common interface so that clients can connect to any server in

1. ZOOKEEPER – OVERVIEW

ZooKeeper

2

the cluster and get the same result. Client applications are the tools to interact with a distributed

application.

Benefits of Distributed Applications

 Reliability – Failure of a single or a few systems does not make the whole system to

fail.

 Scalability – Performance can be increased as and when needed by adding more

machines with minor change in the configuration of the application with no downtime.

 Transparency – Hides the complexity of the system and shows itself as a single entity

/ application.

Challenges of Distributed Applications

 Race condition - Two or more machines trying to perform a particular task, which

actually needs to be done only by a single machine at any given time. For example,

shared resources should only be modified by a single machine at any given time.

 Deadlock – Two or more operations waiting for each other to complete indefinitely.

 Inconsistency – Partial failure of data.

What is Apache ZooKeeper Meant For?

Apache ZooKeeper is a service used by a cluster (group of nodes) to coordinate between

themselves and maintain shared data with robust synchronization techniques. ZooKeeper is itself

a distributed application providing services for writing a distributed application.

The common services provided by ZooKeeper are as follows:

ZooKeeper

3

 Naming service – Identifying the nodes in a cluster by name. It is similar to DNS, but

for nodes.

 Configuration management – Latest and up-to-date configuration information of the

system for a joining node.

 Cluster management – Joining / leaving of a node in a cluster and node status at real

time.

 Leader election – Electing a node as leader for coordination purpose.

 Locking and synchronization service – Locking the data while modifying it. This

mechanism helps you in automatic fail recovery while connecting other distributed

applications like Apache HBase.

 Highly reliable data registry – Availability of data even when one or a few nodes are

down.

Distributed applications offer a lot of benefits, but they throw a few complex and hard-to-crack

challenges as well. ZooKeeper framework provides a complete mechanism to overcome all the

challenges. Race condition and deadlock are handled using fail-safe synchronization

approach. Another main drawback is inconsistency of data, which ZooKeeper resolves with

atomicity.

Benefits of ZooKeeper

Here are the benefits of using ZooKeeper:

 Simple distributed coordination process

 Synchronization – Mutual exclusion and co-operation between server processes. This

process helps in Apache HBase for configuration management.

 Ordered Messages

 Serialization – Encode the data according to specific rules. Ensure your application runs

consistently. This approach can be used in MapReduce to coordinate queue to execute

running threads.

 Reliability

 Atomicity – Data transfer either succeed or fail completely, but no transaction is partial.

ZooKeeper

4

Before going deep into the working of ZooKeeper, let us take a look at the fundamental concepts

of ZooKeeper. We will discuss the following topics in this chapter:

 Architecture

 Hierarchical namespace

 Session

 Watches

Architecture of ZooKeeper

Take a look at the following diagram. It depicts the “Client-Server Architecture” of ZooKeeper.

2. ZOOKEEPER – FUNDAMENTALS

ZooKeeper

5

Each one of the components that is a part of the ZooKeeper architecture has been explained in

the following table.

Part Description

Client

Clients, one of the nodes in our distributed application cluster, access

information from the server. For a particular time interval, every client

sends a message to the server to let the sever know that the client is

alive.

Similarly, the server sends an acknowledgement when a client connects.

If there is no response from the connected server, the client

automatically redirects the message to another server.

Server

Server, one of the nodes in our ZooKeeper ensemble, provides all the

services to clients. Gives acknowledgement to client to inform that the

server is alive.

Ensemble
Group of ZooKeeper servers. The minimum number of nodes that is

required to form an ensemble is 3.

Leader
Server node which performs automatic recovery if any of the connected

node failed. Leaders are elected on service startup.

Follower Server node which follows leader instruction.

Hierarchical Namespace

The following diagram depicts the tree structure of ZooKeeper file system used for memory

representation. ZooKeeper node is referred as znode. Every znode is identified by a name and

separated by a sequence of path (/).

 In the diagram, first you have a root znode separated by “/”. Under root, you have two

logical namespaces config and workers.

 The config namespace is used for centralized configuration management and the

workers namespace is used for naming.

 Under config namespace, each znode can store upto 1MB of data. This is similar to UNIX

file system except that the parent znode can store data as well. The main purpose of this

structure is to store synchronized data and describe the metadata of the znode. This

structure is called as ZooKeeper Data Model.

ZooKeeper

6

Every znode in the ZooKeeper data model maintains a stat structure. A stat simply provides

the metadata of a znode. It consists of Version number, Action control list (ACL), Timestamp,

and Data length.

 Version number: Every znode has a version number, which means every time the data

associated with the znode changes, its corresponding version number would also

increased. The use of version number is important when multiple zookeeper clients are

trying to perform operations over the same znode.

 Action Control List (ACL): ACL is basically an authentication mechanism for accessing

the znode. It governs all the znode read and write operations.

 Timestamp: Timestamp represents time elapsed from znode creation and modification.

It is usually represented in milliseconds. ZooKeeper identifies every change to the znodes

from “Transaction ID” (zxid). Zxid is unique and maintains time for each transaction so

that you can easily identify the time elapsed from one request to another request.

 Data length: Total amount of the data stored in a znode is the data length. You can

store a maximum of 1MB of data.

ZooKeeper

7

Types of Znodes

Znodes are categorized as persistence, sequential, and ephemeral.

 Persistence znode: Persistence znode is alive even after the client, which created that

particular znode, is disconnected. By default, all znodes are persistent unless otherwise

specified.

 Ephemeral znode: Ephemeral znodes are active until the client is alive. When a client

gets disconnected from the ZooKeeper ensemble, then the ephemeral znodes get deleted

automatically. For this reason, only ephemeral znodes are not allowed to have a children

further. If an ephemeral znode is deleted, then the next suitable node will fill its position.

Ephemeral znodes play an important role in Leader election.

 Sequential znode: Sequential znodes can be either persistent or ephemeral. When a

new znode is created as a sequential znode, then ZooKeeper sets the path of the znode

by attaching a 10 digit sequence number to the original name. For example, if a znode

with path /myapp is created as a sequential znode, ZooKeeper will change the path to

/myapp0000000001 and set the next sequence number as 0000000002. If two

sequential znodes are created concurrently, then ZooKeeper never uses the same number

for each znode. Sequential znodes play an important role in Locking and Synchronization.

Sessions

Sessions are very important for the operation of ZooKeeper. Requests in a session are executed

in FIFO order. Once a client connects to a server, the session will be established and a session

id is assigned to the client.

The client sends heartbeats at a particular time interval to keep the session valid. If the

ZooKeeper ensemble does not receive heartbeats from a client for more than the period (session

timeout) specified at the starting of the service, it decides that the client died.

Session timeouts are usually represented in milliseconds. When a session ends for any reason,

the ephemeral znodes created during that session also get deleted.

Watches

Watches are a simple mechanism for the client to get notifications about the changes in the

ZooKeeper ensemble. Clients can set watches while reading a particular znode. Watches send a

notification to the registered client for any of the znode (on which client registers) changes.

Znode changes are modification of data associated with the znode or changes in the znode’s

children. Watches are triggered only once. If a client wants a notification again, it must be done

through another read operation. When a connection session is expired, the client will be

disconnected from the server and the associated watches are also removed.

ZooKeeper

8

Once a ZooKeeper ensemble starts, it will wait for the clients to connect. Clients will connect to

one of the nodes in the ZooKeeper ensemble. It may be a leader or a follower node. Once a

client is connected, the node assigns a session ID to the particular client and sends an

acknowledgement to the client. If the client does not get an acknowledgment, it simply tries to

connect another node in the ZooKeeper ensemble. Once connected to a node, the client will send

heartbeats to the node in a regular interval to make sure that the connection is not lost.

 If a client wants to read a particular znode, it sends a read request to the node

with the znode path and the node returns the requested znode by getting it from its own

database. For this reason, reads are fast in ZooKeeper ensemble.

 If a client wants to store data in the ZooKeeper ensemble, it sends the znode path

and the data to the server. The connected server will forward the request to the leader

and then the leader will reissue the writing request to all the followers. If only a majority

of the nodes respond successfully, then the write request will succeed and a successful

return code will be sent to the client. Otherwise, the write request will fail. The strict

majority of nodes is called as Quorum.

Nodes in a ZooKeeper Ensemble

Let us analyze the effect of having different number of nodes in the ZooKeeper ensemble.

 If we have a single node, then the ZooKeeper ensemble fails when that node fails. It

contributes to “Single Point of Failure” and it is not recommended in a production

environment.

 If we have two nodes and one node fails, we don’t have majority as well, since one out

of two is not a majority.

 If we have three nodes and one node fails, we have majority and so, it is the minimum

requirement. It is mandatory for a ZooKeeper ensemble to have at least three nodes in

a live production environment.

 If we have four nodes and two nodes fail, it fails again and it is similar to having three

nodes. The extra node does not serve any purpose and so, it is better to add nodes in

odd numbers, e.g., 3, 5, 7.

We know that a write process is expensive than a read process in ZooKeeper ensemble, since

all the nodes need to write the same data in its database. So, it is better to have less number

of nodes (3, 5 or 7) than having a large number of nodes for a balanced environment.

The following diagram depicts the ZooKeeper WorkFlow and the subsequent table explains its

different components.

3. ZOOKEEPER – WORKFLOW

ZooKeeper

9

Component Description

Write

Write process is handled by the leader node. The leader forwards the write

request to all the znodes and waits for answers from the znodes. If half of

the znodes reply, then the write process is complete.

Read
Reads are performed internally by a specific connected znode, so there is no

need to interact with the cluster.

Replicated

Database

It is used to store data in zookeeper. Each znode has its own database and

every znode has the same data at every time with the help of consistency.

Leader Leader is the Znode that is responsible for processing write requests.

Follower
Followers receive write requests from the clients and forward them to the

leader znode.

Request Processor Present only in leader node. It governs write requests from the follower node.

Atomic broadcasts
Responsible for broadcasting the changes from the leader node to the

follower nodes.

ZooKeeper

10

Let us analyze how a leader node can be elected in a ZooKeeper ensemble. Consider there are

N number of nodes in a cluster. The process of leader election is as follows:

1. All the nodes create a sequential, ephemeral znode with the same path,

/app/leader_election/guid_.

2. ZooKeeper ensemble will append the 10-digit sequence number to the path and the znode

created will be /app/leader_election/guid_0000000001,

/app/leader_election/guid_0000000002, etc.

3. For a given instance, the node which creates the smallest number in the znode becomes

the leader and all the other nodes are followers.

4. Each follower node watches the znode having the next smallest number. For example,

the node which creates znode /app/leader_election/guid_0000000008 will watch

the znode /app/leader_election/guid_0000000007 and the node which creates the

znode /app/leader_election/guid_0000000007 will watch the znode

/app/leader_election/guid_0000000006.

5. If the leader goes down, then its corresponding znode /app/leader_electionN gets

deleted.

6. The next in line follower node will get the notification through watcher about the leader

removal.

7. The next in line follower node will check if there are other znodes with the smallest

number. If none, then it will assume the role of the leader. Otherwise, it finds the node

which created the znode with the smallest number as leader.

8. Similarly, all other follower nodes elect the node which created the znode with the

smallest number as leader.

Leader election is a complex process when it is done from scratch. But ZooKeeper service makes

it very simple. Let us move on to the installation of ZooKeeper for development purpose in the

next chapter.

4. ZOOKEEPER – LEADER ELECTION

ZooKeeper

11

Before installing ZooKeeper, make sure your system is running on any of the following operating

systems:

 Any of Linux OS – Supports development and deployment. It is preferred for demo

applications.

 Windows OS – Supports only development.

 Mac OS – Supports only development.

ZooKeeper server is created in Java and it runs on JVM. You need to use JDK 6 or greater.

Now, follow the steps given below to install ZooKeeper framework on your machine.

Step 1: Verifying Java Installation

We believe you already have a Java environment installed on your system. Just verify it using

the following command.

$ java -version

If you have Java installed on your machine, then you could see the version of installed Java.

Otherwise, follow the simple steps given below to install the latest version of Java.

Step 1.1: Download JDK

Download the latest version of JDK by visiting the following link and download the latest version.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

The latest version (while writing this tutorial) is JDK 8u 60 and the file is “jdk-8u60-linux-

x64.tar.gz”. Please download the file on your machine.

Step 1.2: Extract the files

Generally, files are downloaded to the downloads folder. Verify it and extract the tar setup

using the following commands.

$ cd /go/to/download/path

$ tar -zxf jdk-8u60-linux-x64.gz

Step 1.3: Move to opt directory

To make Java available to all users, move the extracted java content to “/usr/local/java” folder.

$ su

5. ZOOKEEPER – INSTALLATION

http://www.oracle.com/technetwork/java/javase/downloads/index.html

ZooKeeper

12

password: (type password of root user)

$ mkdir /opt/jdk

$ mv jdk-1.8.0_60 /opt/jdk/

Step 1.4: Set path

To set path and JAVA_HOME variables, add the following commands to ~/.bashrc file.

export JAVA_HOME =/usr/jdk/jdk-1.8.0_60

export PATH=$PATH:$JAVA_HOME/bin

Now, apply all the changes into the current running system.

$ source ~/.bashrc

Step 1.5: Java alternatives

Use the following command to change Java alternatives.

update-alternatives --install /usr/bin/java java /opt/jdk/jdk1.8.0_60/bin/java 100

Step 1.6

Verify the Java installation using the verification command (java -version) explained in Step 1.

Step 2: ZooKeeper Framework Installation

Step 2.1: Download ZooKeeper

To install ZooKeeper framework on your machine, visit the following link and download the latest

version of ZooKeeper. http://zookeeper.apache.org/releases.html

As of now, the latest version of ZooKeeper is 3.4.6 (ZooKeeper-3.4.6.tar.gz).

Step 2.2: Extract the tar file

Extract the tar file using the following commands:

$ cd opt/

$ tar -zxf zookeeper-3.4.6.tar.gz

$ cd zookeeper-3.4.6

$ mkdir data

http://zookeeper.apache.org/releases.html

ZooKeeper

13

Step 2.3: Create configuration file

Open the configuration file named conf/zoo.cfg using the command vi conf/zoo.cfg and all

the following parameters to set as starting point.

$ vi conf/zoo.cfg

tickTime=2000

dataDir=/path/to/zookeeper/data

clientPort=2181

initLimit=5

syncLimit=2

Once the configuration file has been saved successfully, return to the terminal again. You can

now start the zookeeper server.

Step 2.4: Start ZooKeeper server

Execute the following command:

$ bin/zkServer.sh start

After executing this command, you will get a response as follows:

$ JMX enabled by default

$ Using config: /Users/../zookeeper-3.4.6/bin/../conf/zoo.cfg

$ Starting zookeeper ... STARTED

Step 2.5: Start CLI

Type the following command:

$ bin/zkCli.sh

After typing the above command, you will be connected to the ZooKeeper server and you should

get the following response.

Connecting to localhost:2181

................

................

................

Welcome to ZooKeeper!

................

................

ZooKeeper

14

WATCHER::

WatchedEvent state:SyncConnected type: None path:null

[zk: localhost:2181(CONNECTED) 0]

Stop ZooKeeper Server

After connecting the server and performing all the operations, you can stop the zookeeper server

by using the following command.

$ bin/zkServer.sh stop

ZooKeeper

15

ZooKeeper Command Line Interface (CLI) is used to interact with the ZooKeeper ensemble for

development purpose. It is useful for debugging and working around with different options.

To perform ZooKeeper CLI operations, first turn on your ZooKeeper server (“bin/zkServer.sh

start”) and then, ZooKeeper client (“bin/zkCli.sh”). Once the client starts, you can perform the

following operation:

 Create znodes

 Get data

 Watch znode for changes

 Set data

 Create children of a znode

 List children of a znode

 Check Status

 Remove / Delete a znode

Now let us see above command one by one with an example.

Create Znodes

Create a znode with the given path. The flag argument specifies whether the created znode will

be ephemeral, persistent, or sequential. By default, all znodes are persistent.

 Ephemeral znodes (flag: e) will be automatically deleted when a session expires or

when the client disconnects.

 Sequential znodes guaranty that the znode path will be unique.

 ZooKeeper ensemble will add sequence number along with 10 digit padding to the znode

path. For example, the znode path /myapp will be converted to /myapp0000000001 and

the next sequence number will be /myapp0000000002. If no flags are specified, then the

znode is considered as persistent.

Syntax

create /path /data

Sample

create /FirstZnode “Myfirstzookeeper-app”

6. ZOOKEEPER – CLI

ZooKeeper

16

Output

[zk: localhost:2181(CONNECTED) 0] create /FirstZnode “Myfirstzookeeper-app”

Created /FirstZnode

To create a Sequential znode, add -s flag as shown below.

Syntax

create -s /path /data

Sample

create -s /FirstZnode second-data

Output

[zk: localhost:2181(CONNECTED) 2] create -s /FirstZnode “second-data”

Created /FirstZnode0000000023

To create an Ephemeral znode, add -e flag as shown below.

Syntax

create -e /path /data

Sample

create -e /SecondZnode “Ephemeral-data”

Output

[zk: localhost:2181(CONNECTED) 2] create -e /SecondZnode “Ephemeral-data”

Created /SecondZnode

Remember when a client connection is lost, the ephemeral znode will be deleted. You can try it

by quitting the ZooKeeper CLI and then re-opening the CLI.

Get Data

It returns the associated data of the znode and metadata of the specified znode. You will get

information such as when the data was last modified, where it was modified, and information

about the data. This CLI is also used to assign watches to show notification about the data.

ZooKeeper

17

Syntax

get /path

Sample

get /FirstZnode

Output

[zk: localhost:2181(CONNECTED) 1] get /FirstZnode

“Myfirstzookeeper-app”

cZxid = 0x7f

ctime = Tue Sep 29 16:15:47 IST 2015

mZxid = 0x7f

mtime = Tue Sep 29 16:15:47 IST 2015

pZxid = 0x7f

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 22

numChildren = 0

To access a sequential znode, you must enter the full path of the znode.

Sample

get /FirstZnode0000000023

Output

[zk: localhost:2181(CONNECTED) 1] get /FirstZnode0000000023

“Second-data”

cZxid = 0x80

ctime = Tue Sep 29 16:25:47 IST 2015

mZxid = 0x80

mtime = Tue Sep 29 16:25:47 IST 2015

pZxid = 0x80

ZooKeeper

18

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 13

numChildren = 0

Watch

Watches show a notification when the specified znode or znode’s children data changes. You can

set a watch only in get command.

Syntax

get /path [watch] 1

Sample

get /FirstZnode 1

Output

[zk: localhost:2181(CONNECTED) 1] get /FirstZnode 1

“Myfirstzookeeper-app”

cZxid = 0x7f

ctime = Tue Sep 29 16:15:47 IST 2015

mZxid = 0x7f

mtime = Tue Sep 29 16:15:47 IST 2015

pZxid = 0x7f

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 22

numChildren = 0

The output is similar to normal get command, but it will wait for znode changes in the

background. <Start here>

ZooKeeper

19

Set Data

Set the data of the specified znode. Once you finish this set operation, you can check the data

using the get CLI command.

Syntax

set /path /data

Sample

set /SecondZnode Data-updated

Output

[zk: localhost:2181(CONNECTED) 1] get /SecondZnode “Data-updated”

cZxid = 0x82

ctime = Tue Sep 29 16:29:50 IST 2015

mZxid = 0x83

mtime = Tue Sep 29 16:29:50 IST 2015

pZxid = 0x82

cversion = 0

dataVersion = 1

aclVersion = 0

ephemeralOwner = 0x15018b47db00000

dataLength = 14

numChildren = 0

If you assigned watch option in get command (as in previous command), then the output will

be similar as shown below:

Output

[zk: localhost:2181(CONNECTED) 1] get /FirstZnode “Mysecondzookeeper-app”

WATCHER: :

WatchedEvent state:SyncConnected type:NodeDataChanged path:/FirstZnode

cZxid = 0x7f

ctime = Tue Sep 29 16:15:47 IST 2015

ZooKeeper

20

mZxid = 0x84

mtime = Tue Sep 29 17:14:47 IST 2015

pZxid = 0x7f

cversion = 0

dataVersion = 1

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 23

numChildren = 0

Create Children / Sub-znode

Creating children is similar to creating new znodes. The only difference is that the path of the

child znode will have the parent path as well.

Syntax

create /parent/path/subnode/path /data

Sample

create /FirstZnode/Child1 firstchildren

Output

[zk: localhost:2181(CONNECTED) 16] create /FirstZnode/Child1 “firstchildren”

created /FirstZnode/Child1

[zk: localhost:2181(CONNECTED) 17] create /FirstZnode/Child2 “secondchildren”

created /FirstZnode/Child2

List Children

This command is used to list and display the children of a znode.

Syntax

ls /path

Sample

ls /MyFirstZnode

ZooKeeper

21

Output

[zk: localhost:2181(CONNECTED) 2] ls /MyFirstZnode

[mysecondsubnode, myfirstsubnode]

Check Status

Status describes the metadata of a specified znode. It contains details such as Timestamp,

Version number, ACL, Data length, and Children znode.

Syntax

stat /path

Sample

stat /FirstZnode

Output

[zk: localhost:2181(CONNECTED) 1] stat /FirstZnode

cZxid = 0x7f

ctime = Tue Sep 29 16:15:47 IST 2015

mZxid = 0x7f

mtime = Tue Sep 29 17:14:24 IST 2015

pZxid = 0x7f

cversion = 0

dataVersion = 1

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 23

numChildren = 0

ZooKeeper

22

Remove a Znode

Removes a specified znode and recursively all its children. This would happen only if such a

znode is available.

Syntax

rmr /path

Sample

rmr /FirstZnode

Output

[zk: localhost:2181(CONNECTED) 10] rmr /FirstZnode

[zk: localhost:2181(CONNECTED) 11] get /FirstZnode

Node does not exist: /FirstZnode

Delete (delete /path) command is similar to remove command, except the fact that it works

only on znodes with no children.

ZooKeeper

23

ZooKeeper has an official API binding for Java and C. The ZooKeeper community provides

unofficial API for most of the languages (.NET, python, etc.). Using ZooKeeper API, an application

can connect, interact, manipulate data, coordinate, and finally disconnect from a ZooKeeper

ensemble.

ZooKeeper API has a rich set of features to get all the functionality of the ZooKeeper ensemble

in a simple and safe manner. ZooKeeper API provides both synchronous and asynchronous

methods.

ZooKeeper ensemble and ZooKeeper API completely complement each other in every aspect and

it benefits the developers in a great way. Let us discuss Java binding in this chapter.

Basics of ZooKeeper API

Application interacting with ZooKeeper ensemble is referred as ZooKeeper Client or simply

Client.

Znode is the core component of ZooKeeper ensemble and ZooKeeper API provides a small set

of methods to manipulate all the details of znode with ZooKeeper ensemble.

A client should follow the steps given below to have a clear and clean interaction with ZooKeeper

ensemble.

 Connect to the ZooKeeper ensemble. ZooKeeper ensemble assign a Session ID for the

client.

 Send heartbeats to the server periodically. Otherwise, the ZooKeeper ensemble expires

the Session ID and the client needs to reconnect.

 Get / Set the znodes as long as a session ID is active.

 Disconnect from the ZooKeeper ensemble, once all the tasks are completed. If the client

is inactive for a prolonged time, then the ZooKeeper ensemble will automatically

disconnect the client.

Java Binding

Let us understand the most important set of ZooKeeper API in this chapter. The central part of

the ZooKeeper API is ZooKeeper class. It provides options to connect the ZooKeeper ensemble

in its constructor and has the following methods:

 connect – connect to the ZooKeeper ensemble

 create – create a znode

 exists – check whether a znode exists and its information

 getData – get data from a particular znode

 setData – set data in a particular znode

7. ZOOKEEPER – API

ZooKeeper

24

 getChildren – get all sub-nodes available in a particular znode

 delete – get a particular znode and all its children

 close – close a connection

Connect to the ZooKeeper Ensemble

The ZooKeeper class provides connection functionality through its constructor. The signature of

the constructor is as follows:

ZooKeeper(String connectionString, int sessionTimeout, Watcher watcher)

Where,

 connectionString – ZooKeeper ensemble host.

 sessionTimeout – session timeout in milliseconds.

 watcher – an object implementing “Watcher” interface. The ZooKeeper ensemble

returns the connection status through the watcher object.

Let us create a new helper class ZooKeeperConnection and add a method connect. The

connect method creates a ZooKeeper object, connects to the ZooKeeper ensemble, and then

returns the object.

Here CountDownLatch is used to stop (wait) the main process until the client connects with

the ZooKeeper ensemble.

The ZooKeeper ensemble replies the connection status through the Watcher callback. The

Watcher callback will be called once the client connects with the ZooKeeper ensemble and the

Watcher callback calls the countDown method of the CountDownLatch to release the lock,

await in the main process.

Here is the complete code to connect with a ZooKeeper ensemble.

Coding: ZooKeeperConnection.java

// import java classes

import java.io.IOException;

import java.util.concurrent.CountDownLatch;

// import zookeeper classes

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.ZooKeeper;

ZooKeeper

25

import org.apache.zookeeper.AsyncCallback.StatCallback;

import org.apache.zookeeper.KeeperException.Code;

import org.apache.zookeeper.data.Stat;

public class ZooKeeperConnection {

 // declare zookeeper instance to access ZooKeeper ensemble

 private ZooKeeper zoo;

 final CountDownLatch connectedSignal = new CountDownLatch(1);

 // Method to connect zookeeper ensemble.

 public ZooKeeper connect(String host) throws IOException,InterruptedException {

 zoo = new ZooKeeper(host,5000,new Watcher() {

 public void process(WatchedEvent we) {

 if (we.getState() == KeeperState.SyncConnected) {

 connectedSignal.countDown();

 }

 }

 });

 connectedSignal.await();

 return zoo;

 }

 // Method to disconnect from zookeeper server

 public void close() throws InterruptedException {

 zoo.close();

 }

}

Save the above code and it will be used in the next section for connecting the ZooKeeper

ensemble.

ZooKeeper

26

Create a Znode

The ZooKeeper class provides create method to create a new znode in the ZooKeeper

ensemble. The signature of the create method is as follows:

create(String path, byte[] data, List<ACL> acl, CreateMode createMode)

Where,

 path – Znode path. For example, /myapp1, /myapp2, /myapp1/mydata1,

myapp2/mydata1/myanothersubdata

 data – data to store in a specified znode path

 acl – access control list of the node to be created. ZooKeeper API provides a static

interface ZooDefs.Ids to get some of basic acl list. For example,

ZooDefs.Ids.OPEN_ACL_UNSAFE returns a list of acl for open znodes.

 createMode – the type of node, either ephemeral, sequential, or both. This is an enum.

Let us create a new Java application to check the create functionality of the ZooKeeper API.

Create a file ZKCreate.java. In the main method, create an object of type

ZooKeeperConnection and call the connect method to connect to the ZooKeeper ensemble.

The connect method will return the ZooKeeper object zk. Now, call the create method of zk

object with custom path and data.

The complete program code to create a znode is as follows:

Coding: ZKCreate.java

import java.io.IOException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.CreateMode;

import org.apache.zookeeper.ZooDefs;

public class ZKCreate {

 // create static instance for zookeeper class.

 private static ZooKeeper zk;

ZooKeeper

27

 // create static instance for ZooKeeperConnection class.

 private static ZooKeeperConnection conn;

 // Method to create znode in zookeeper ensemble

 public static void create(String path, byte[] data) throws

KeeperException,InterruptedException {

 zk.create(path, data, ZooDefs.Ids.OPEN_ACL_UNSAFE,

CreateMode.PERSISTENT);

 }

 public static void main(String[] args)

 {

 // znode path

 String path = "/MyFirstZnode"; // Assign path to znode

 // data in byte array

 byte[] data = "My first zookeeper app”.getBytes(); // Declare data

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 create(path, data); // Create the data to the specified path

 conn.close();

 } catch (Exception e) {

 System.out.println(e.getMessage()); //Catch error message

 }

 }

}

Once the application is compiled and executed, a znode with the specified data will be created

in the ZooKeeper ensemble. You can check it using the ZooKeeper CLI zkCli.sh.

cd /path/to/zookeeper

ZooKeeper

28

bin/zkCli.sh

>>> get /MyFirstZnode

Exists – Check the Existence of a Znode

The ZooKeeper class provides the exists method to check the existence of a znode. It returns

the metadata of a znode, if the specified znode exists. The signature of the exists method is as

follows:

exists(String path, boolean watcher)

Where,

 path – Znode path

 watcher – boolean value to specify whether to watch a specified znode or not

Let us create a new Java application to check the “exists” functionality of the ZooKeeper API.

Create a file “ZKExists.java”. In the main method, create ZooKeeper object, “zk” using

“ZooKeeperConnection” object. Then, call “exists” method of “zk” object with custom “path”.

The complete listing is as follow

Coding: ZKExists.java

import java.io.IOException;

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.data.Stat;

public class ZKExists {

 private static ZooKeeper zk;

 private static ZooKeeperConnection conn;

 // Method to check existence of znode and its status, if znode is available.

 public static Stat znode_exists(String path) throws

KeeperException,InterruptedException {

 return zk.exists(path, true);

 }

ZooKeeper

29

 public static void main(String[] args) throws

InterruptedException,KeeperException {

 String path= "/MyFirstZnode"; // Assign znode to the specified path

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 Stat stat = znode_exists(path); // Stat checks the path of the znode

 if(stat!= null) {

 System.out.println("Node exists and the node version is " +

stat.getVersion());

 } else {

 System.out.println("Node does not exists");

 }

 }

 catch(Exception e) {

 System.out.println(e.getMessage()); // Catches error messages

 }

 }

}

Once the application is compiled and executed, you will get the below output.

Node exists and the node version is 1.

getData Method

The ZooKeeper class provides getData method to get the data attached in a specified znode

and its status. The signature of the getData method is as follows:

getData(String path, Watcher watcher, Stat stat)

Where,

 path – Znode path.

ZooKeeper

30

 watcher – Callback function of type Watcher. The ZooKeeper ensemble will notify

through the Watcher callback when the data of the specified znode changes. This is one-

time notification.

 stat – Returns the metadata of a znode.

Let us create a new Java application to understand the getData functionality of the ZooKeeper

API. Create a file ZKGetData.java. In the main method, create a ZooKeeper object zk using

the ZooKeeperConnection object. Then, call the getData method of zk object with custom

path.

Here is the complete program code to get the data from a specified node:

Coding: ZKGetData.java

import java.io.IOException;

import java.util.concurrent.CountDownLatch;

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.data.Stat;

public class ZKGetData {

 private static ZooKeeper zk;

 private static ZooKeeperConnection conn;

 public static Stat znode_exists(String path) throws

KeeperException,InterruptedException {

 return zk.exists(path,true);

 }

 public static void main(String[] args) throws InterruptedException, KeeperException {

 String path = "/MyFirstZnode";

 final CountDownLatch connectedSignal = new CountDownLatch(1);

ZooKeeper

31

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 Stat stat = znode_exists(path);

 if(stat != null) {

 byte[] b = zk.getData(path, new Watcher() {

 public void process(WatchedEvent we) {

 if (we.getType() == Event.EventType.None) {

 switch(we.getState()) {

 case Expired:

 connectedSignal.countDown();

 break;

 }

 } else {

 String path = "/MyFirstZnode";

 try {

 byte[] bn = zk.getData(path,

false, null);

 String data = new String(bn,

"UTF-8");

 System.out.println(data);

 connectedSignal.countDown();

 } catch(Exception ex) {

 System.out.println(ex.getMessage());

 }

 }

 }

 }, null);

 String data = new String(b, "UTF-8");

 System.out.println(data);

 connectedSignal.await();

ZooKeeper

32

 } else {

 System.out.println("Node does not exists");

 }

 }

 catch(Exception e) {

 System.out.println(e.getMessage());

 }

 }

}

Once the application is compiled and executed, you will get the following output.

My first zookeeper app

And the application will wait for further notification from the ZooKeeper ensemble. Change the

data of the specified znode using ZooKeeper CLI zkCli.sh.

cd /path/to/zookeeper

bin/zkCli.sh

>>> set /MyFirstZnode Hello

Now, the application will print the following output and exit.

Hello

setData Method

The ZooKeeper class provides setData method to modify the data attached in a specified znode.

The signature of the setData method is as follows:

setData(String path, byte[] data, int version)

Where,

 path – Znode path

 data – data to store in a specified znode path.

 version – Current version of the znode. ZooKeeper updates the version number of the

znode whenever the data gets changed.

ZooKeeper

33

Let us now create a new Java application to understand the setData functionality of the

ZooKeeper API. Create a file ZKSetData.java. In the main method, create a ZooKeeper object

zk using the ZooKeeperConnection object. Then, call the setData method of zk object with

the specified path, new data, and version of the node.

Here is the complete program code to modify the data attached in a specified znode.

Code: ZKSetData.java

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import java.io.IOException;

public class ZKSetData {

 private static ZooKeeper zk;

 private static ZooKeeperConnection conn;

 // Method to update the data in a znode. Similar to getData but without watcher.

 public static void update(String path, byte[] data) throws

KeeperException,InterruptedException {

 zk.setData(path, data, zk.exists(path,true).getVersion());

 }

 public static void main(String[] args) throws InterruptedException,KeeperException {

 String path= "/MyFirstZnode";

 byte[] data = "Success".getBytes(); //Assign data which is to be updated.

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 update(path, data); // Update znode data to the specified path

ZooKeeper

34

 }

 catch(Exception e) {

 System.out.println(e.getMessage());

 }

 }

}

Once the application is compiled and executed, the data of the specified znode will be changed

and it can be checked using the ZooKeeper CLI, zkCli.sh.

cd /path/to/zookeeper

bin/zkCli.sh

>>> get /MyFirstZnode

getChildren Method

The ZooKeeper class provides getChildren method to get all the sub-node of a particular znode.

The signature of the getChildren method is as follows:

getChildren(String path, Watcher watcher)

Where,

 path – Znode path.

 watcher – Callback function of type “Watcher”. The ZooKeeper ensemble will notify when

the specified znode gets deleted or a child under the znode gets created / deleted. This

is a one-time notification.

Coding: ZKGetChildren.java

import java.io.IOException;

import java.util.*;

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

import org.apache.zookeeper.WatchedEvent;

import org.apache.zookeeper.Watcher;

import org.apache.zookeeper.Watcher.Event.KeeperState;

import org.apache.zookeeper.data.Stat;

ZooKeeper

35

public class ZKGetChildren {

 private static ZooKeeper zk;

 private static ZooKeeperConnection conn;

 // Method to check existence of znode and its status, if znode is available.

 public static Stat znode_exists(String path) throws

KeeperException,InterruptedException {

 return zk.exists(path,true);

 }

 public static void main(String[] args) throws InterruptedException,KeeperException {

 String path= "/MyFirstZnode"; // Assign path to the znode

 try {

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 Stat stat = znode_exists(path); // Stat checks the path

 if(stat!= null) {

 //“getChildren” method- get all the children of znode.It has two

args, path and watch

 List<String> children = zk.getChildren(path, false);

 for(int i = 0; i < children.size(); i++)

 System.out.println(children.get(i)); //Print

children's

 } else {

 System.out.println("Node does not exists");

 }

 }

 catch(Exception e) {

 System.out.println(e.getMessage());

 }

ZooKeeper

36

 }

}

Before running the program, let us create two sub-nodes for /MyFirstZnode using the

ZooKeeper CLI, zkCli.sh.

cd /path/to/zookeeper

bin/zkCli.sh

>>> create /MyFirstZnode/myfirstsubnode Hi

>>> create /MyFirstZnode/mysecondsubmode Hi

Now, compiling and running the program will output the above created znodes.

myfirstsubnode

mysecondsubnode

Delete a Znode

The ZooKeeper class provides delete method to delete a specified znode. The signature of the

delete method is as follows:

delete(String path, int version)

Where,

 path – Znode path.

 version – Current version of the znode.

Let us create a new Java application to understand the delete functionality of the ZooKeeper

API. Create a file ZKDelete.java. In the main method, create a ZooKeeper object zk using

ZooKeeperConnection object. Then, call the delete method of zk object with the specified

path and version of the node.

The complete program code to delete a znode is as follows:

Coding: ZKDelete.java

import org.apache.zookeeper.ZooKeeper;

import org.apache.zookeeper.KeeperException;

public class ZKDelete {

ZooKeeper

37

 private static ZooKeeper zk;

 private static ZooKeeperConnection conn;

 // Method to check existence of znode and its status, if znode is available.

 public static void delete(String path) throws KeeperException,InterruptedException {

 zk.delete(path,zk.exists(path,true).getVersion());

 }

 public static void main(String[] args) throws InterruptedException,KeeperException {

 String path= "/MyFirstZnode"; //Assign path to the znode

 try{

 conn = new ZooKeeperConnection();

 zk = conn.connect("localhost");

 delete(path); //delete the node with the specified path

 }

 catch(Exception e) {

 System.out.println(e.getMessage()); // catches error messages

 }

 }

}

ZooKeeper

38

Zookeeper provides a flexible coordination infrastructure for distributed environment. ZooKeeper

framework supports many of the today's best industrial applications. We will discuss some of

the most notable applications of ZooKeeper in this chapter.

Yahoo!

The ZooKeeper framework was originally built at “Yahoo!”. A well-designed distributed

application needs to meet requirements such as data transparency, better performance,

robustness, centralized configuration, and coordination. So, they designed the ZooKeeper

framework to meet these requirements.

Apache Hadoop

Apache Hadoop is the driving force behind the growth of Big Data industry. Hadoop relies on

ZooKeeper for configuration management and coordination. Let us take a scenario to understand

the role of ZooKeeper in Hadoop.

Assume that a Hadoop cluster bridges 100 or more commodity servers. Therefore, there’s

a need for coordination and naming services. As computation of large number of nodes are

involved, each node needs to synchronize with each other, know where to access services, and

know how they should be configured. At this point of time, Hadoop clusters require cross-node

services. ZooKeeper provides the facilities for cross-node synchronization and ensures the

tasks across Hadoop projects are serialized and synchronized.

Multiple ZooKeeper servers support large Hadoop clusters. Each client machine communicates

with one of the ZooKeeper servers to retrieve and update its synchronization information. Some

of the real-time examples are:

 Human Genome Project – The Human Genome Project contains terabytes of data.

Hadoop MapReduce framework can be used to analyze the dataset and find interesting

facts for human development.

 Healthcare – Hospitals can store, retrieve, and analyze huge sets of patient medical

records, which are normally in terabytes.

Apache HBase

Apache HBase is an open source, distributed, NoSQL database used for real-time read/write

access of large datasets and runs on top of the HDFS. HBase follows master-slave architecture

where the HBase Master governs all the slaves. Slaves are referred as Region servers.

HBase distributed application installation depends on a running ZooKeeper cluster. Apache

HBase uses ZooKeeper to track the status of distributed data throughout the master and region

servers with the help of centralized configuration management and distributed mutex

mechanisms. Here are some of the use-cases of HBase:

8. ZOOKEEPER – APPLICATIONS

ZooKeeper

39

 Telecom – Telecom industry stores billions of mobile call records (around 30TB / month)

and accessing these call records in real time become a huge task. HBase can be used to

process all the records in real time, easily and efficiently.

 Social network – Similar to telecom industry, sites like Twitter, LinkedIn, and Facebook

receive huge volumes of data through the posts created by users. HBase can be used to

find recent trends and other interesting facts.

Apache Solr

Apache Solr is a fast, open source search platform written in Java. It is a blazing fast, fault-

tolerant distributed search engine. Built on top of Lucene, it is a high-performance, full-featured

text search engine.

Solr extensively uses every feature of ZooKeeper such as Configuration management, Leader

election, node management, Locking and syncronization of data.

Solr has two distinct parts, indexing and searching. Indexing is a process of storing the data

in a proper format so that it can be searched later. Solr uses ZooKeeper for both indexing the

data in multiple nodes and searching from multiple nodes. ZooKeeper contributes the following

features:

 Add / remove nodes as and when needed

 Replication of data between nodes and subsequently minimizing data loss

 Sharing of data between multiple nodes and subsequently searching from multiple nodes

for faster search results

Some of the use-cases of Apache Solr include e-commerce, job search, etc.

